Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
95 tokens/sec
Gemini 2.5 Pro Premium
32 tokens/sec
GPT-5 Medium
18 tokens/sec
GPT-5 High Premium
20 tokens/sec
GPT-4o
97 tokens/sec
DeepSeek R1 via Azure Premium
87 tokens/sec
GPT OSS 120B via Groq Premium
468 tokens/sec
Kimi K2 via Groq Premium
202 tokens/sec
2000 character limit reached

Efficient Multi-Agent Delegated Search (2411.00181v1)

Published 31 Oct 2024 in cs.GT

Abstract: Consider a principal who wants to search through a space of stochastic solutions for one maximizing their utility. If the principal cannot conduct this search on their own, they may instead delegate this problem to an agent with distinct and potentially misaligned utilities. This is called delegated search, and the principal in such problems faces a mechanism design problem in which they must incentivize the agent to find and propose a solution maximizing the principal's expected utility. Following prior work in this area, we consider mechanisms without payments and aim to achieve a multiplicative approximation of the principal's utility when they solve the problem without delegation. In this work, we investigate a natural and recently studied generalization of this model to multiple agents and find nearly tight bounds on the principal's approximation as the number of agents increases. As one might expect, this approximation approaches 1 with increasing numbers of agents, but, somewhat surprisingly, we show that this is largely not due to direct competition among agents.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube