Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Natural gradient and parameter estimation for quantum Boltzmann machines (2410.24058v1)

Published 31 Oct 2024 in quant-ph, cond-mat.stat-mech, cs.LG, and math.OC

Abstract: Thermal states play a fundamental role in various areas of physics, and they are becoming increasingly important in quantum information science, with applications related to semi-definite programming, quantum Boltzmann machine learning, Hamiltonian learning, and the related task of estimating the parameters of a Hamiltonian. Here we establish formulas underlying the basic geometry of parameterized thermal states, and we delineate quantum algorithms for estimating the values of these formulas. More specifically, we prove formulas for the Fisher--Bures and Kubo--Mori information matrices of parameterized thermal states, and our quantum algorithms for estimating their matrix elements involve a combination of classical sampling, Hamiltonian simulation, and the Hadamard test. These results have applications in developing a natural gradient descent algorithm for quantum Boltzmann machine learning, which takes into account the geometry of thermal states, and in establishing fundamental limitations on the ability to estimate the parameters of a Hamiltonian, when given access to thermal-state samples. For the latter task, and for the special case of estimating a single parameter, we sketch an algorithm that realizes a measurement that is asymptotically optimal for the estimation task. We finally stress that the natural gradient descent algorithm developed here can be used for any machine learning problem that employs the quantum Boltzmann machine ansatz.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (34)
  1. M. A. Continentino, Key Methods and Concepts in Condensed Matter Physics, 2053-2563 (IOP Publishing, 2021).
  2. P. Deglmann, A. Schäfer, and C. Lennartz, Application of quantum calculations in the chemical industry—an overview, International Journal of Quantum Chemistry 115, 107 (2015).
  3. A. M. Alhambra, Quantum many-body systems in thermal equilibrium, PRX Quantum 4, 040201 (2023).
  4. E. T. Jaynes, Information theory and statistical mechanics, Physical Review 106, 620 (1957a).
  5. E. T. Jaynes, Information theory and statistical mechanics. II, Physical Review 108, 171 (1957b).
  6. F. G. S. L. Brandão and K. M. Svore, Quantum speed-ups for solving semidefinite programs, in 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS) (IEEE Computer Society, 2017) pp. 415–426.
  7. M. Kieferová and N. Wiebe, Tomography and generative training with quantum Boltzmann machines, Physical Review A 96, 062327 (2017).
  8. L. Coopmans and M. Benedetti, On the sample complexity of quantum Boltzmann machine learning, Communications Physics 7, 274 (2024).
  9. C.-F. Chen, M. J. Kastoryano, and A. Gilyén, An efficient and exact noncommutative quantum Gibbs sampler (2023b), arXiv:2311.09207 [quant-ph] .
  10. T. Bergamaschi, C.-F. Chen, and Y. Liu, Quantum computational advantage with constant-temperature Gibbs sampling (2024), arXiv:2404.14639 [quant-ph] .
  11. J. Rajakumar and J. D. Watson, Gibbs sampling gives quantum advantage at constant temperatures with O⁢(1)𝑂1O(1)italic_O ( 1 )-local Hamiltonians (2024), arXiv:2408.01516 [quant-ph] .
  12. C. Rouzé, D. S. Franca, and Á. M. Alhambra, Efficient thermalization and universal quantum computing with quantum Gibbs samplers (2024), arXiv:2403.12691 [quant-ph] .
  13. M. Jarzyna and J. Kolodynski, Geometric approach to quantum statistical inference, IEEE Journal on Selected Areas in Information Theory 1, 367 (2020).
  14. S.-I. Amari, Natural gradient works efficiently in learning, Neural Computation 10, 251 (1998).
  15. B. Neyshabur, R. R. Salakhutdinov, and N. Srebro, Path-SGD: Path-normalized optimization in deep neural networks, Advances in Neural Information Processing Systems 28 (2015).
  16. C. O. Marrero, M. Kieferová, and N. Wiebe, Entanglement-induced barren plateaus, PRX Quantum 2, 040316 (2021).
  17. T. Haug, K. Bharti, and M. Kim, Capacity and quantum geometry of parametrized quantum circuits, PRX Quantum 2, 040309 (2021).
  18. I. Bengtsson and K. Zyczkowski, Geometry of Quantum States: An Introduction to Quantum Entanglement (Cambridge University Press, 2006).
  19. J. S. Sidhu and P. Kok, Geometric perspective on quantum parameter estimation, AVS Quantum Science 2, 014701 (2020).
  20. J. J. Meyer, Fisher information in noisy intermediate-scale quantum applications, Quantum 5, 539 (2021).
  21. C. Helstrom, The minimum variance of estimates in quantum signal detection, IEEE Transactions on Information Theory 14, 234 (1968).
  22. V. Katariya and M. M. Wilde, Geometric distinguishability measures limit quantum channel estimation and discrimination, Quantum Information Processing 20, 78 (2021).
  23. D. Bures, An extension of Kakutani’s theorem on infinite product measures to the tensor product of semifinite W𝑊Witalic_W*-algebras, Transactions of the American Mathematical Society 135, 199 (1969).
  24. A. Uhlmann, The “transition probability” in the state space of a *-algebra, Reports on Mathematical Physics 9, 273 (1976).
  25. H. Umegaki, Conditional expectation in an operator algebra, IV (entropy and information), Kodai Mathematical Journal 14, 59 (1962).
  26. G. Lindblad, Completely positive maps and entropy inequalities, Communications in Mathematical Physics 40, 147 (1975).
  27. F. Hiai and D. Petz, The proper formula for relative entropy and its asymptotics in quantum probability, Communications in Mathematical Physics 143, 99 (1991).
  28. H. Nagaoka and T. Ogawa, Strong converse and Stein’s lemma in quantum hypothesis testing, IEEE Transactions on Information Theory 46, 2428 (2000).
  29. M. B. Hastings, Quantum belief propagation: An algorithm for thermal quantum systems, Physical Review B 76, 201102 (2007).
  30. I. H. Kim, Perturbative analysis of topological entanglement entropy from conditional independence, Physical Review B 86, 245116 (2012).
  31. S. Lloyd, Universal quantum simulators, Science 273, 1073 (1996).
  32. G. H. Low and I. L. Chuang, Hamiltonian simulation by qubitization, Quantum 3, 163 (2019).
  33. S. L. Braunstein and C. M. Caves, Statistical distance and the geometry of quantum states, Physical Review Letters 72, 3439 (1994).
  34. NISO, Credit – contributor roles taxonomy, https://credit.niso.org/, Accessed 2024-10-28.
Citations (1)

Summary

  • The paper introduces a natural gradient descent method tailored for quantum Boltzmann machines to optimize parameterized thermal states efficiently.
  • It derives precise Fisher–Bures and Kubo–Mori matrices using quantum algorithms like Hamiltonian simulation and the Hadamard test.
  • The study establishes benchmarks for quantum Hamiltonian parameter estimation, paving the way for enhanced quantum machine learning models.

Natural Gradient and Parameter Estimation for Quantum Boltzmann Machines

The paper, "Natural Gradient and Parameter Estimation for Quantum Boltzmann Machines," presents analytical formulas for calculating the Fisher--Bures and Kubo--Mori information matrices for parameterized thermal states. These states are mathematical representations of systems in quantum mechanics at thermal equilibrium, described by specific configurations of a Hamiltonian and a temperature. The paper is situated within the expanding field of quantum information science, where thermal states have become crucial—not only within traditional physics domains such as condensed matter, high energy, and chemistry, but also in the context of quantum computational processes.

The authors focus on quantum Boltzmann machines (QBMs), which model probability distributions over quantum states, analogous to classical Boltzmann machines but leveraging quantum mechanics principles. Here, the natural gradient descent method is tailored for use with QBMs by integrating the unique geometry induced by the Fisher--Bures metric. In this context, the Fisher--Bures information matrix accounts for non-Euclidean influences within quantum probability spaces, providing a more accurate and computationally efficient optimization path compared to the traditional Euclidean gradient descent.

Quantum Information Metrics

The Fisher--Bures and Kubo--Mori information matrices are derived to understand how these metric tensors influence parameter optimization in parameterized thermal states. The paper tackles the challenge of estimating matrix elements, demonstrating the implementation of quantum algorithms that can compute these estimates efficiently. Leveraging tools like Hamiltonian simulation and the Hadamard test, these estimations become feasible on quantum computers, thus advancing practical applications for QBMs.

Applications and Implications

The insights gathered are applicable in two significant domains: QBMs in computational learning tasks and quantum Hamiltonian parameter estimation. The natural gradient developed for QBMs can consequently optimize machine learning models in quantum computing environments, outperforming classical techniques by adapting the optimization process to the intrinsic geometry of the quantum system's parameter space. This methodological shift is critically reviewed within the framework of quantum information theory, forming a promising enhancement for algorithms related to quantum-enhanced generative modeling and energy estimation processes.

For estimating Hamiltonian parameters, traditionally an arduous task due to inherent quantum state complexity, the paper establishes fundamental limits drawing from the multiparameter Cramer--Rao bound, an inequality that gives a lower bound on the variance of estimators. The findings imply that the capabilities of any estimation protocol are inherently limited by the geometric properties observed via the derived matrices. Thus, quantum experimental designs aiming to estimate Hamiltonian parameters can use these bounds as an evaluative benchmark for efficiency and feasibility.

Future Directions

The research underlines several open avenues. A key path forward lies in numerically validating the natural gradient descent's efficiency on concrete quantum learning models. Additionally, exploring convergence properties and the specific role of mirror descent compared to the outlined natural gradient in quantum Boltzmann machines offers valuable insights into algorithmic optimizations in quantum computing paradigms. Furthermore, expanding these methodologies to more complex quantum systems may further delineate their theoretical and practical boundaries, thus broadening quantum computational capabilities.

In conclusion, the paper leverages advanced quantum information geometric concepts to propose algorithmic strategies that could significantly enhance the practicality and performance of quantum machine learning models and quantum parameter estimation tasks. As quantum technology matures, the application of such theoretical frameworks will likely become foundational in harnessing quantum computational supremacy.