Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
98 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Ultra-Slow-Roll Inflation on the Lattice I: Backreaction and Nonlinear Effects (2410.23942v3)

Published 31 Oct 2024 in astro-ph.CO, gr-qc, and hep-th

Abstract: Violating the slow-roll regime during the final stages of inflation can significantly enhance curvature perturbations, a scenario often invoked in models producing primordial black holes and small-scale scalar induced gravitational waves. When perturbations are enhanced, one approaches the regime in which tree-level computations are insufficient, and nonlinear corrections may become relevant. In this work, we conduct lattice simulations of ultra-slow-roll (USR) dynamics to investigate the significance of nonlinear effects, both in terms of backreaction on the background and in the evolution of perturbations. Our systematic study of various USR potentials reveals that nonlinear corrections are significant when the tree-level curvature power spectrum peaks at $\mathcal{P}{\rm max}{\zeta} = {\cal O}(10{-3})-{\cal O}(10{-2})$, with 5%-20% corrections. Larger enhancements yield even greater differences. We find a simple universal relation between simulation and tree-level quantities $\dot\phi = \dot\phi{\rm tree}\left(1+\sqrt{\mathcal{P}{\rm max}_{\zeta,\rm tree}}\right)$ at the end of the USR phase, which is valid in all cases we consider. Additionally, we explore how nonlinear interactions during the USR phase affect the clustering and non-Gaussianity of scalar fluctuations, crucial for understanding the phenomenological consequences of USR, such as scalar-induced gravitational waves and primordial black holes. Our findings demonstrate the necessity of going beyond leading order perturbation theory results, through higher-order or non-perturbative computations, to make robust predictions for inflation models exhibiting a USR phase.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (51)
  1. Y. Akrami et al. (Planck), Astron. Astrophys. 641, A10 (2020), arXiv:1807.06211 [astro-ph.CO] .
  2. A. A. Starobinsky, Phys. Lett. B 91, 99 (1980).
  3. A. H. Guth, Phys. Rev. D 23, 347 (1981).
  4. A. D. Linde, Phys. Lett. B 108, 389 (1982).
  5. A. Albrecht and P. J. Steinhardt, Phys. Rev. Lett. 48, 1220 (1982).
  6. W. H. Kinney, Phys. Rev. D 56, 2002 (1997), arXiv:hep-ph/9702427 .
  7. S. Inoue and J. Yokoyama, Phys. Lett. B 524, 15 (2002), arXiv:hep-ph/0104083 .
  8. W. H. Kinney, Phys. Rev. D 72, 023515 (2005), arXiv:gr-qc/0503017 .
  9. H. Motohashi and W. Hu, Phys. Rev. D 96, 063503 (2017), arXiv:1706.06784 [astro-ph.CO] .
  10. K. Tomita, Prog. Theor. Phys. 54, 730 (1975).
  11. G. Domènech, Universe 7, 398 (2021), arXiv:2109.01398 [gr-qc] .
  12. Y. B. Zel’dovich and I. D. Novikov, Soviet Astron. AJ (Engl. Transl. ), 10, 602 (1967).
  13. S. Hawking, Mon. Not. Roy. Astron. Soc. 152, 75 (1971).
  14. B. J. Carr and S. W. Hawking, Mon. Not. Roy. Astron. Soc. 168, 399 (1974).
  15. B. J. Carr, Astrophys. J. 201, 1 (1975).
  16. G. F. Chapline, Nature 253, 251 (1975).
  17. A. M. Green and B. J. Kavanagh, J. Phys. G 48, 043001 (2021), arXiv:2007.10722 [astro-ph.CO] .
  18. A. Achúcarro et al.,   (2022), arXiv:2203.08128 [astro-ph.CO] .
  19. P. Auclair et al. (LISA Cosmology Working Group), Living Rev. Rel. 26, 5 (2023), arXiv:2204.05434 [astro-ph.CO] .
  20. E. Bagui et al. (LISA Cosmology Working Group),   (2023), arXiv:2310.19857 [astro-ph.CO] .
  21. J. Kristiano and J. Yokoyama,   (2024a), arXiv:2405.12149 [astro-ph.CO] .
  22. M. Taoso and A. Urbano, JCAP 08, 016 (2021), arXiv:2102.03610 [astro-ph.CO] .
  23. G. Franciolini and A. Urbano, Phys. Rev. D 106, 123519 (2022), arXiv:2207.10056 [astro-ph.CO] .
  24. G. Ballesteros and M. Taoso, Phys. Rev. D 97, 023501 (2018), arXiv:1709.05565 [hep-ph] .
  25. D. Wands, Phys. Rev. D 60, 023507 (1999), arXiv:gr-qc/9809062 .
  26. M. Sasaki, Prog. Theor. Phys. 76, 1036 (1986).
  27. V. F. Mukhanov, Sov. Phys. JETP 67, 1297 (1988).
  28. A. Caravano and M. Peloso,   (2024), arXiv:2407.13405 [astro-ph.CO] .
  29. G. Ballesteros and J. G. Egea, JCAP 07, 052 (2024), arXiv:2404.07196 [astro-ph.CO] .
  30. J. Kristiano and J. Yokoyama,   (2024b), 10.1088/1475-7516/2024/10/036, arXiv:2405.12145 [astro-ph.CO] .
  31. A. Caravano,   (2022), 10.5282/edoc.30905, arXiv:2209.13616 [astro-ph.CO] .
  32. J. Kristiano and J. Yokoyama, Phys. Rev. Lett. 132, 221003 (2024c), arXiv:2211.03395 [hep-th] .
  33. A. Riotto,   (2023a), arXiv:2301.00599 [astro-ph.CO] .
  34. J. Kristiano and J. Yokoyama, Phys. Rev. D 109, 103541 (2024d), arXiv:2303.00341 [hep-th] .
  35. A. Riotto,   (2023b), arXiv:2303.01727 [astro-ph.CO] .
  36. H. Firouzjahi and A. Riotto, JCAP 02, 021 (2024), arXiv:2304.07801 [astro-ph.CO] .
  37. H. Motohashi and Y. Tada, JCAP 08, 069 (2023), arXiv:2303.16035 [astro-ph.CO] .
  38. G. Tasinato, Phys. Rev. D 109, 063510 (2024), arXiv:2312.03498 [hep-th] .
  39. G. Tasinato, Phys. Rev. D 108, 043526 (2023), arXiv:2305.11568 [hep-th] .
  40. H. Firouzjahi, JCAP 10, 006 (2023), arXiv:2303.12025 [astro-ph.CO] .
  41. J. Fumagalli,   (2023), arXiv:2305.19263 [astro-ph.CO] .
  42. H. Firouzjahi, Phys. Rev. D 109, 043514 (2024), arXiv:2311.04080 [astro-ph.CO] .
  43. M. Braglia and L. Pinol, JHEP 08, 068 (2024), arXiv:2403.14558 [astro-ph.CO] .
  44. K. Inomata, Phys. Rev. Lett. 133, 141001 (2024), arXiv:2403.04682 [astro-ph.CO] .
  45. J. Fumagalli,   (2024), arXiv:2408.08296 [astro-ph.CO] .
  46. D. Green and K. Gupta,   (2024), arXiv:2410.11973 [hep-th] .
  47. C. Animali and V. Vennin, JCAP 08, 026 (2024), arXiv:2402.08642 [astro-ph.CO] .
  48. C. Unal, Phys. Rev. D 99, 041301 (2019), arXiv:1811.09151 [astro-ph.CO] .
  49. C. Yuan and Q.-G. Huang, Phys. Lett. B 821, 136606 (2021), arXiv:2007.10686 [astro-ph.CO] .
  50. V. Atal and G. Domènech, JCAP 06, 001 (2021), [Erratum: JCAP 10, E01 (2023)], arXiv:2103.01056 [astro-ph.CO] .
  51. J. A. Ruiz and J. Rey,   (2024), arXiv:2410.09014 [astro-ph.CO] .
Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com