Non-Hydrostatic Model for Simulating Moving Bottom-Generated Waves: A Shallow Water Extension with Quadratic Vertical Pressure Profile (2410.23707v1)
Abstract: We formulate a depth-averaged non-hydrostatic model to solve wave equations with generation by a moving bottom. This model is built upon the shallow water equations, which are widely used in tsunami wave modelling. An extension leads to two additional unknowns to be solved: vertical momentum and non-hydrostatic pressure. We show that a linear vertical velocity assumption turns out to give us a quadratic pressure relation, which is equivalent to Boussinesq-type equations. However, this extension involves a time derivative of an unknown parameter, rendering the solution by a projection method ambiguous. In this study, we derive an alternative form of the elliptic system of equations to avoid such ambiguity. The new set of equations satisfies the desired solubility property, while also consistently representing the non-flat moving topography wave generation. Validations are performed using several test cases based on previous experiments and a high-fidelity simulation. First, we show the efficiency of our model in solving a vertical movement, which represents an undersea earthquake-generated tsunami. Following that, we demonstrate the accuracy of the model for landslide-generated waves. Finally, we compare the performance of our novel set of equations with the linear and simplified quadratic pressure profiles.
- doi: 10.1098/rsta.2014.0382
- doi: 10.1007/s10236-008-0162-5
- doi: 10.1016/j.rineng.2022.100605
- doi: 10.1016/j.aej.2021.12.069
- doi: 10.5194/nhess-13-1507-2013
- Gobbi MF, Kirby JT. Wave evolution over submerged sills: tests of a high-order Boussinesq model. Coastal Engineering 1999; 37(1): 57-96. doi: 10.1016/S0378-3839(99)00015-0
- doi: 10.1016/j.coastaleng.2009.02.004
- doi: 10.1016/j.jcp.2014.05.035
- Peregrine DH. Long waves on a beach. Journal of Fluid Mechanics 1967; 27(4): 815–827. doi: 10.1017/S0022112067002605
- doi: 10.1061/(ASCE)0733-950X(1993)119:6(618)
- doi: 10.1098/rsta.1998.0309
- doi: 10.1098/rspa.2002.1067
- doi: 10.1098/rspa.2013.0496
- doi: 10.1061/(ASCE)0733-9429(1998)124:7(678)
- Stansby PK, Zhou JG. Shallow-water flow solver with non-hydrostatic pressure: 2D vertical plane problems. International Journal for Numerical Methods in Fluids 1998; 28(3): 541-563. doi: 10.1002/(SICI)1097-0363(19980915)28:3<541::AID-FLD738>3.0.CO;2-0
- Walters RA. A semi-implicit finite element model for non-hydrostatic (dispersive) surface waves. International Journal for Numerical Methods in Fluids 2005; 49(7): 721-737. doi: 10.1002/fld.1019
- Stelling G, Zijlema M. An accurate and efficient finite-difference algorithm for non-hydrostatic free-surface flow with application to wave propagation. International Journal for Numerical Methods in Fluids 2003; 43(1): 1-23. doi: 10.1002/fld.595
- doi: 10.1002/fld.1952
- doi: 10.1017/S0022112087000594
- doi: 10.1002/fld.4361
- doi: 10.1016/j.coastaleng.2023.104452
- doi: 10.1002/fld.4807
- Chorin AJ. Numerical solution of the Navier-Stokes equations. Mathematics of Computation 1968; 22(104): 745–762. doi: 10.1090/s0025-5718-1968-0242392-2
- Jeschke A. Second Order Convergent Discontinuous Galerkin Projection Method for Dispersive Shallow Water Flows. PhD thesis. Universität Hamburg, ; 2018
- doi: 10.1007/s10236-006-0093-y
- Giraldo FX, Warburton T. A high-order triangular discontinuous Galerkin oceanic shallow water model. International Journal for Numerical Methods in Fluids 2008; 56(7): 899-925. doi: 10.1002/fld.1562
- doi: 10.1016/j.cma.2013.03.015
- doi: 10.1016/j.advwatres.2015.08.008
- doi: 10.1016/j.jcp.2012.10.038
- Cockburn B, Shu CW. The Local Discontinuous Galerkin Method for Time-Dependent Convection-Diffusion Systems. SIAM Journal on Numerical Analysis 1998; 35(6): 2440-2463. doi: 10.1137/S0036142997316712
- Cockburn B. Discontinuous Galerkin methods. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 2003; 83(11): 731-754. doi: 10.1002/zamm.200310088
- Castillo P. A review of the Local Discontinuous Galerkin (LDG) method applied to elliptic problems. Applied Numerical Mathematics 2006; 56(10): 1307-1313. Selected Papers from the First Chilean Workshop on Numerical Analysis of Partial Differential Equations (WONAPDE 2004)doi: 10.1016/j.apnum.2006.03.016
- Escalante C, Luna dTM. A General Non-hydrostatic Hyperbolic Formulation for Boussinesq Dispersive Shallow Flows and Its Numerical Approximation. Journal of Scientific Computing 2020; 83(3): 62. doi: 10.1002/fld.4361
- doi: 10.1016/j.jcp.2019.05.035
- Toro EF. Riemann solvers and numerical methods for fluid dynamics: a practical introduction. Springer Berlin, Heidelberg. 3 ed. 2013
- Shu CW, Osher S. Efficient implementation of essentially non-oscillatory shock-capturing schemes. Journal of Computational Physics 1988; 77(2): 439-471. doi: 10.1016/0021-9991(88)90177-5
- Hammack JL. A note on tsunamis: their generation and propagation in an ocean of uniform depth. Journal of Fluid Mechanics 1973; 60(4): 769–799. doi: 10.1017/S0022112073000479
- doi: 10.1007/s00024-024-03485-1
- doi: 10.1007/s10652-015-9411-6
- doi: 10.1007/s11069-020-04063-z
- doi: 10.1098/rspa.2002.0973
- Ataie-Ashtiani B, Najafi Jilani A. A higher-order Boussinesq-type model with moving bottom boundary: applications to submarine landslide tsunami waves. International Journal for Numerical Methods in Fluids 2007; 53(6): 1019-1048. doi: 10.1002/fld.1354
- doi: 10.1098/rspa.2004.1305
- doi: 10.1061/(ASCE)0733-950X(1994)120:6(609)