Quantum Digital Twins for Uncertainty Quantification (2410.23311v1)
Abstract: Modern supercomputers can handle resource-intensive computational and data-driven problems in various industries and academic fields. These supercomputers are primarily made up of traditional classical resources comprising CPUs and GPUs. Integrating quantum processing units with supercomputers offers the potential to accelerate and manage computationally intensive subroutines currently handled by CPUs or GPUs. However, the presence of noise in quantum processing units limits their ability to provide a clear quantum advantage over conventional classical resources. Hence, we develop and construct "quantum digital twins," virtual versions of quantum processing units. To demonstrate the potential benefit of quantum digital twins, we create and deploy hybrid quantum ensembles on five quantum digital twins that emulate parallel quantum computers since hybrid quantum ensembles are suitable for distributed computing. Our study demonstrates that quantum digital twins assist in analyzing the actual quantum device noise on real-world use cases and emulate parallel quantum processing units for distributed computational tasks to obtain quantum advantage as early as possible.
- Y. Kawazura and S. S. Kimura, “Inertial range of magnetorotational turbulence,” Science Advances, vol. 10, no. 35, 2024. [Online]. Available: https://www.science.org/doi/abs/10.1126/sciadv.adp4965
- V. Eyring, W. D. Collins, P. Gentine, E. A. Barnes, M. Barreiro, T. Beucler, M. Bocquet, C. S. Bretherton, H. M. Christensen, K. Dagon, D. J. Gagne, D. Hall, D. Hammerling, S. Hoyer, F. Iglesias-Suarez, I. Lopez-Gomez, M. C. McGraw, G. A. Meehl, M. J. Molina, C. Monteleoni, J. Mueller, M. S. Pritchard, D. Rolnick, J. Runge, P. Stier, O. Watt-Meyer, K. Weigel, R. Yu, and L. Zanna, “Pushing the frontiers in climate modelling and analysis with machine learning,” Nature Climate Change, 2024. [Online]. Available: https://doi.org/10.1038/s41558-024-02095-y
- A. Aspuru-Guzik, A. D. Dutoi, P. J. Love, and M. Head-Gordon, “Simulated quantum computation of molecular energies,” Science, vol. 309, no. 5741, pp. 1704–1707, 2005. [Online]. Available: https://www.science.org/doi/abs/10.1126/science.1113479
- A. Miessen, P. J. Ollitrault, F. Tacchino, and I. Tavernelli, “Quantum algorithms for quantum dynamics,” Nature Computational Science, vol. 3, no. 1, pp. 25–37, Jan 2023. [Online]. Available: https://doi.org/10.1038/s43588-022-00374-2
- J. Liu, M. Liu, J.-P. Liu, Z. Ye, Y. Wang, Y. Alexeev, J. Eisert, and L. Jiang, “Towards provably efficient quantum algorithms for large-scale machine-learning models,” Nature Communications, vol. 15, no. 1, p. 434, 2024. [Online]. Available: https://doi.org/10.1038/s41467-023-43957-x
- Y. Alexeev, M. Amsler, and et. al., “Quantum-centric supercomputing for materials science: A perspective on challenges and future directions,” Future Generation Computer Systems, vol. 160, pp. 666–710, 2024. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0167739X24002012
- J. Preskill, “Quantum Computing in the NISQ era and beyond,” Quantum, vol. 2, p. 79, 2018. [Online]. Available: https://doi.org/10.22331/q-2018-08-06-79
- M. Cerezo, A. Arrasmith, R. Babbush, S. C. Benjamin, S. Endo, K. Fujii, J. R. McClean, K. Mitarai, X. Yuan, L. Cincio, and P. J. Coles, “Variational quantum algorithms,” Nature Reviews Physics, vol. 3, pp. 625–644, 2021. [Online]. Available: https://doi.org/10.1038/s42254-021-00348-9
- S. V. Isakov, D. Kafri, O. Martin, C. V. Heidweiller, W. Mruczkiewicz, M. P. Harrigan, N. C. Rubin, R. Thomson, M. Broughton, K. Kissell, E. Peters, E. Gustafson, A. C. Y. Li, H. Lamm, G. Perdue, A. K. Ho, D. Strain, and S. Boixo, “Simulations of quantum circuits with approximate noise using qsim and cirq,” arXiv, 2021. [Online]. Available: https://arxiv.org/abs/2111.02396
- (last accessed in 2024) Quantum Digital Twins. [Online]. Available: https://github.com/sozoluffy/Quantum-Digital-Twins/tree/main
- B. Lakshminarayanan, A. Pritzel, and C. Blundell, “Simple and scalable predictive uncertainty estimation using deep ensembles,” in Advances in Neural Information Processing Systems, vol. 30, 2017. [Online]. Available: https://proceedings.neurips.cc/paper_files/paper/2017/file/9ef2ed4b7fd2c810847ffa5fa85bce38-Paper.pdf
- M. Pandey, M. Fernandez, F. Gentile, O. Isayev, A. Tropsha, A. C. Stern, and A. Cherkasov, “The transformational role of GPU computing and deep learning in drug discovery,” Nature Machine Intelligence, vol. 4, no. 3, pp. 211–221, 2022. [Online]. Available: https://doi.org/10.1038/s42256-022-00463-x
- J. Willard, X. Jia, S. Xu, M. Steinbach, and V. Kumar, “Integrating scientific knowledge with machine learning for engineering and environmental systems,” arXiv, 2021. [Online]. Available: https://arxiv.org/abs/2003.04919
- Y. Gal, P. Koumoutsakos, F. Lanusse, G. Louppe, and C. Papadimitriou, “Bayesian uncertainty quantification for machine-learned models in physics,” Nature Reviews Physics, vol. 4, no. 9, pp. 573–577, 2022. [Online]. Available: https://doi.org/10.1038/s42254-022-00498-4
- C. Rudin, “Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead,” arXiv, 2018. [Online]. Available: https://arxiv.org/abs/1811.10154
- W. Li, Z. Yin, X. Li, D. Ma, S. Yi, Z. Zhang, C. Zou, K. Bu, M. Dai, J. Yue, Y. Chen, X. Zhang, and S. Zhang, “A hybrid quantum computing pipeline for real world drug discovery,” Scientific Reports, vol. 14, no. 1, p. 16942, Jul 2024. [Online]. Available: https://doi.org/10.1038/s41598-024-67897-8
- S. Otgonbaatar and M. Datcu, “Classification of remote sensing images with parameterized quantum gates,” IEEE Geoscience and Remote Sensing Letters, pp. 1–5, 2021. [Online]. Available: https://doi.org/10.1109/LGRS.2021.3108014
- (last accessed in 2024) IBM Quantum Experience. [Online]. Available: https://quantum-computing.ibm.com/
- S. Otgonbaatar and D. Kranzlmüller, “Exploiting the quantum advantage for satellite image processing: Review and assessment,” IEEE Transactions on Quantum Engineering, vol. 5, pp. 1–9, 2024. [Online]. Available: https://ieeexplore.ieee.org/document/10339907
- L. Schmitt, C. Piveteau, and D. Sutter, “Cutting circuits with multiple two-qubit unitaries,” 2024. [Online]. Available: https://arxiv.org/abs/2312.11638
Collections
Sign up for free to add this paper to one or more collections.