Consistent $\mathcal{N}=4$, $D=4$ truncation of type IIB supergravity on $\textrm{S}^{1} \times \textrm{S}^{5}$ (2410.23149v1)
Abstract: Fetching techniques from Generalised Geometry and Exceptional Field Theory, we develop a new method to identify consistent subsectors of four-dimensional gauged maximal supergravities that possess a (locally) geometric embedding in type IIB or 11D supergravity. We show that a subsector that is invariant under a structure group $\textrm{G}\textrm{S} \subset \textrm{E}{7(7)}$ can define a consistent truncation, even when $\textrm{G}_\textrm{S}$ is not part of the symmetry of the gauged maximal supergravity. As an illustration of the method, type IIB supergravity on $\textrm{S}{1} \times \textrm{S}{5}$ is shown to admit a consistent truncation to pure $\mathcal{N}=4$, $D=4$ gauged supergravity. Explicit uplift formulae are presented which provide a type IIB alternative to the M-theory embedding constructed by Cvetic, Lu and Pope $25$ years ago.
- J. M. Maldacena, “The Large N limit of superconformal field theories and supergravity,” Int. J. Theor. Phys. 38 (1999) 1113–1133, arXiv:hep-th/9711200 [hep-th]. [Adv. Theor. Math. Phys.2,231(1998)].
- A. Das, M. Fischler, and M. Rocek, “SuperHiggs Effect in a New Class of Scalar Models and a Model of Super QED,” Phys. Rev. D 16 (1977) 3427–3436.
- M. Cvetic, H. Lu, and C. N. Pope, “Four-dimensional N=4, SO(4) gauged supergravity from D = 11,” Nucl. Phys. B 574 (2000) 761–781, arXiv:hep-th/9910252.
- J. P. Gauntlett and O. Varela, “Consistent Kaluza-Klein reductions for general supersymmetric AdS solutions,” Phys. Rev. D 76 (2007) 126007, arXiv:0707.2315 [hep-th].
- G. Larios and O. Varela, “Minimal D=4𝐷4D=4italic_D = 4 𝒩=2𝒩2\mathcal{N}=2caligraphic_N = 2 supergravity from D=11𝐷11D=11italic_D = 11: An M-theory free lunch,” JHEP 10 (2019) 251, arXiv:1907.11027 [hep-th].
- M. Gabella, D. Martelli, A. Passias, and J. Sparks, “𝒩=2𝒩2{\cal N}=2caligraphic_N = 2 supersymmetric AdS4 solutions of M-theory,” Commun. Math. Phys. 325 (2014) 487–525, arXiv:1207.3082 [hep-th].
- D. Cassani and P. Koerber, “Tri-Sasakian consistent reduction,” JHEP 1201 (2012) 086, arXiv:1110.5327 [hep-th].
- B. de Wit and H. Nicolai, “The Consistency of the S**7 Truncation in D=11 Supergravity,” Nucl. Phys. B281 (1987) 211–240.
- B. de Wit and H. Nicolai, “N=8 Supergravity,” Nucl.Phys. B208 (1982) 323.
- G. Larios, P. Ntokos, and O. Varela, “Embedding the SU(3) sector of SO(8) supergravity in D=11𝐷11D=11italic_D = 11,” Phys. Rev. D 100 no. 8, (2019) 086021, arXiv:1907.02087 [hep-th].
- A. Guarino and O. Varela, “Consistent 𝒩=8𝒩8\mathcal{N}=8caligraphic_N = 8 truncation of massive IIA on S6,” JHEP 12 (2015) 020, arXiv:1509.02526 [hep-th].
- A. Guarino and O. Varela, “Dyonic ISO(7) supergravity and the duality hierarchy,” JHEP 02 (2016) 079, arXiv:1508.04432 [hep-th].
- O. Varela, “Minimal D=4𝐷4D=4italic_D = 4 truncations of type IIA,” JHEP 11 (2019) 009, arXiv:1908.00535 [hep-th].
- O. Hohm and H. Samtleben, “Exceptional Form of D=11 Supergravity,” Phys.Rev.Lett. 111 (2013) 231601, arXiv:1308.1673 [hep-th].
- O. Hohm and H. Samtleben, “Exceptional Field Theory II: E7(7),” Phys.Rev. D89 no. 6, (2014) 066017, arXiv:1312.4542 [hep-th].
- O. Hohm and H. Samtleben, “Consistent Kaluza-Klein Truncations via Exceptional Field Theory,” JHEP 1501 (2015) 131, arXiv:1410.8145 [hep-th].
- G. Inverso, “Generalised Scherk-Schwarz reductions from gauged supergravity,” JHEP 12 (2017) 124, arXiv:1708.02589 [hep-th]. [Erratum: JHEP 06, 148 (2021)].
- D. Cassani, G. Josse, M. Petrini, and D. Waldram, “Systematics of consistent truncations from generalised geometry,” JHEP 11 (2019) 017, arXiv:1907.06730 [hep-th].
- G. Inverso, H. Samtleben, and M. Trigiante, “Type II supergravity origin of dyonic gaugings,” Phys. Rev. D95 no. 6, (2017) 066020, arXiv:1612.05123 [hep-th].
- J. Schon and M. Weidner, “Gauged N=4 supergravities,” JHEP 05 (2006) 034, arXiv:hep-th/0602024.
- J. Louis and H. Triendl, “Maximally supersymmetric AdS4 vacua in N = 4 supergravity,” JHEP 10 (2014) 007, arXiv:1406.3363 [hep-th].
- B. de Wit, H. Samtleben, and M. Trigiante, “Magnetic charges in local field theory,” JHEP 0509 (2005) 016, arXiv:hep-th/0507289 [hep-th].
- G. Dall’Agata, N. Liatsos, R. Noris, and M. Trigiante, “Gauged D = 4 𝒩𝒩\mathcal{N}caligraphic_N = 4 supergravity,” JHEP 09 (2023) 071, arXiv:2305.04015 [hep-th].
- D. Z. Freedman and J. H. Schwarz, “N=4 Supergravity Theory with Local SU(2) x SU(2) Invariance,” Nucl. Phys. B 137 (1978) 333–339.
- A. Guarino and C. Sterckx, “Type IIB S-folds: flat deformations, holography and stability,” PoS CORFU2021 (2022) 163, arXiv:2204.09993 [hep-th].
- M. J. Duff and C. N. Pope, “Consistent truncations in Kaluza-Klein theories,” Nucl. Phys. B 255 (1985) 355–364.
- C. N. Pope and K. S. Stelle, “Zilch Currents, Supersymmetry and Kaluza-Klein Consistency,” Phys. Lett. B 198 (1987) 151.
- A. Gallerati, H. Samtleben, and M. Trigiante, “The N>2𝑁2N>2italic_N > 2 supersymmetric AdS vacua in maximal supergravity,” arXiv:1410.0711 [hep-th].
- A. Guarino, A. Rudra, C. Sterckx, and M. Trigiante, “Blackening S-folds,” arXiv:2407.11593 [hep-th].
- E. Malek, “Half-Maximal Supersymmetry from Exceptional Field Theory,” Fortsch. Phys. 65 no. 10-11, (2017) 1700061, arXiv:1707.00714 [hep-th].
- B. de Wit, H. Samtleben, and M. Trigiante, “The Maximal D=4 supergravities,” JHEP 0706 (2007) 049, arXiv:0705.2101 [hep-th].
- C. Sterckx, “Modave Lecture notes: Introduction to Exceptional Field Theory,” in 19th Modave Summer School in Mathematical Physics. 10, 2024. arXiv:2410.19600 [hep-th].
- Up to normalisation factors that can be read off from the supersymmetry variations of the fermions: (𝒜1)ij=23(𝒜1𝒩=4)ijsubscriptsubscript𝒜1𝑖𝑗23subscriptsuperscriptsubscript𝒜1𝒩4𝑖𝑗(\mathcal{A}_{1})_{ij}=\tfrac{\sqrt{2}}{3}(\mathcal{A}_{1}^{\mathcal{N}=4})_{ij}( caligraphic_A start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT = divide start_ARG square-root start_ARG 2 end_ARG end_ARG start_ARG 3 end_ARG ( caligraphic_A start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT caligraphic_N = 4 end_POSTSUPERSCRIPT ) start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT and 16(𝒜2)iϵklmjklm=23(𝒜2𝒩=4)ij16subscriptsubscript𝒜2𝑖superscriptsubscriptitalic-ϵ𝑘𝑙𝑚𝑗𝑘𝑙𝑚23subscriptsuperscriptsubscript𝒜2𝒩4𝑖𝑗\tfrac{1}{6}(\mathcal{A}_{2})_{i}{}^{klm}\epsilon_{klmj}=\tfrac{\sqrt{2}}{3}\,% (\mathcal{A}_{2}^{\mathcal{N}=4})_{ij}divide start_ARG 1 end_ARG start_ARG 6 end_ARG ( caligraphic_A start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_FLOATSUPERSCRIPT italic_k italic_l italic_m end_FLOATSUPERSCRIPT italic_ϵ start_POSTSUBSCRIPT italic_k italic_l italic_m italic_j end_POSTSUBSCRIPT = divide start_ARG square-root start_ARG 2 end_ARG end_ARG start_ARG 3 end_ARG ( caligraphic_A start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT caligraphic_N = 4 end_POSTSUPERSCRIPT ) start_POSTSUBSCRIPT italic_i italic_j end_POSTSUBSCRIPT.
- P. Ferrero, M. Inglese, D. Martelli, and J. Sparks, “Multicharge accelerating black holes and spinning spindles,” Phys. Rev. D 105 no. 12, (2022) 126001, arXiv:2109.14625 [hep-th].
- M. M. Caldarelli and D. Klemm, “All supersymmetric solutions of N=2, D = 4 gauged supergravity,” JHEP 09 (2003) 019, arXiv:hep-th/0307022.
- The Einstein equations have been verified using some of the non-trivial examples in [35].
- A. Guarino and C. Sterckx, “Flat deformations of type IIB S-folds,” JHEP 11 (2021) 171, arXiv:2109.06032 [hep-th].
- O. Aharony, O. Bergman, D. L. Jafferis, and J. Maldacena, “N=6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals,” JHEP 10 (2008) 091, arXiv:0806.1218 [hep-th].
- E. Colombo, S. M. Hosseini, D. Martelli, A. Pittelli, and A. Zaffaroni, “Microstates of Accelerating and Supersymmetric AdS4 Black Holes from the Spindle Index,” Phys. Rev. Lett. 133 no. 3, (2024) 031603, arXiv:2404.07173 [hep-th].
- B. Assel and A. Tomasiello, “Holographic duals of 3d S-fold CFTs,” JHEP 06 (2018) 019, arXiv:1804.06419 [hep-th].
- Y. Lozano, N. T. Macpherson, J. Montero, and C. Nunez, “Three-dimensional 𝒩=4𝒩4\mathcal{N}=4caligraphic_N = 4 linear quivers and non-Abelian T-duals,” JHEP 11 (2016) 133, arXiv:1609.09061 [hep-th].
- N. Bobev, F. F. Gautason, and J. van Muiden, “The holographic conformal manifold of 3d 𝒩𝒩\mathcal{N}caligraphic_N = 2 S-fold SCFTs,” JHEP 07 no. 221, (2021) 221, arXiv:2104.00977 [hep-th].
- N. Bobev, F. F. Gautason, and J. van Muiden, “The conformal manifold of S-folds in string theory,” JHEP 03 (2024) 167, arXiv:2312.13370 [hep-th].
- B. Assel, C. Bachas, J. Estes, and J. Gomis, “Holographic Duals of D=3 N=4 Superconformal Field Theories,” JHEP 08 (2011) 087, arXiv:1106.4253 [hep-th].
- B. Assel, C. Bachas, J. Estes, and J. Gomis, “IIB Duals of D=3 N=4 Circular Quivers,” JHEP 12 (2012) 044, arXiv:1210.2590 [hep-th].
- E. D’Hoker, J. Estes, and M. Gutperle, “Exact half-BPS Type IIB interface solutions. I. Local solution and supersymmetric Janus,” JHEP 06 (2007) 021, arXiv:0705.0022 [hep-th].
- E. D’Hoker, J. Estes, and M. Gutperle, “Exact half-BPS Type IIB interface solutions. II. Flux solutions and multi-Janus,” JHEP 06 (2007) 022, arXiv:0705.0024 [hep-th].
- M. Akhond, A. Legramandi, and C. Nunez, “Electrostatic description of 3d 𝒩𝒩\mathcal{N}caligraphic_N = 4 linear quivers,” JHEP 11 (2021) 205, arXiv:2109.06193 [hep-th].
- D. Gaiotto and E. Witten, “S-Duality of Boundary Conditions In N=4 Super Yang-Mills Theory,” Adv. Theor. Math. Phys. 13 no. 3, (2009) 721–896, arXiv:0807.3720 [hep-th].
- K. Lee, C. Strickland-Constable, and D. Waldram, “New gaugings and non-geometry,” arXiv:1506.03457 [hep-th].
- G. Dall’Agata, G. Inverso, and M. Trigiante, “Evidence for a family of SO(8) gauged supergravity theories,” Phys. Rev. Lett. 109 (2012) 201301, arXiv:1209.0760 [hep-th].