Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Shrinking targets versus recurrence: the quantitative theory (2410.22993v1)

Published 30 Oct 2024 in math.DS

Abstract: Let $X = [0,1]$, and let $T:X\to X$ be an expanding piecewise linear map sending each interval of linearity to $[0,1]$. For $\psi:\mathbb N\to\mathbb R_{\geq 0}$, $x\in X$, and $N\in\mathbb N$ we consider the recurrence counting function [ R(x,N;T,\psi) := #{1\leq n\leq N: d(Tn x, x) < \psi(n)}. ] We show that for any $\varepsilon > 0$ we have [ R(x,N;T,\psi) = \Psi(N)+O\left(\Psi{1/2}(N) \ (\log\Psi(N)){3/2+\varepsilon}\right) ] for $\mu$-almost all $x\in X$ and for all $N\in\mathbb N$, where $\Psi(N):= 2 \sum_{n=1}N \psi(n)$. We also prove a generalization of this result to higher dimensions.

Summary

We haven't generated a summary for this paper yet.