Performance Benchmarking of Quantum Algorithms for Hard Combinatorial Optimization Problems: A Comparative Study of non-FTQC Approaches (2410.22810v1)
Abstract: This study systematically benchmarks several non-fault-tolerant quantum computing algorithms across four distinct optimization problems: max-cut, number partitioning, knapsack, and quantum spin glass. Our benchmark includes noisy intermediate-scale quantum (NISQ) algorithms, such as the variational quantum eigensolver, quantum approximate optimization algorithm, quantum imaginary time evolution, and imaginary time quantum annealing, with both ansatz-based and ansatz-free implementations, alongside tensor network methods and direct simulations of the imaginary-time Schr\"odinger equation. For comparative analysis, we also utilize classical simulated annealing and quantum annealing on D-Wave devices. Employing default configurations, our findings reveal that no single non-FTQC algorithm performs optimally across all problem types, underscoring the need for tailored algorithmic strategies. This work provides an objective performance baseline and serves as a critical reference point for advancing NISQ algorithms and quantum annealing platforms.
- J. Preskill, Quantum Computing in the NISQ era and beyond, Quantum 2, 79 (2018).
- T. Kadowaki and H. Nishimori, Quantum annealing in the transverse ising model, Physical Review E 58, 5355 (1998).
- T. Albash and D. A. Lidar, Adiabatic quantum computation, Rev. Mod. Phys. 90, 015002 (2018).
- E. Farhi, J. Goldstone, and S. Gutmann, A quantum approximate optimization algorithm (2014), arXiv:1411.4028 [quant-ph] .
- S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, Optimization by simulated annealing, Science 220, 671 (1983).
- Gurobi Optimization, LLC, Gurobi Optimizer Reference Manual (2024).
- A. Ceselli and M. Premoli, On good encodings for quantum annealer and digital optimization solvers, Scientific Reports 13, 5628 (2023).
- P. Amara, D. Hsu, and J. E. Straub, Global energy minimum searches using an approximate solution of the imaginary time schroedinger equation, The Journal of Physical Chemistry 97, 6715 (1993).
- H. Nishimori and S. Morita, Mathematical aspects of quantum annealing, Journal of Physics: Conference Series 95, 012021 (2008).
- S. Morita and H. Nishimori, Mathematical foundation of quantum annealing, Journal of Mathematical Physics 49, 125210 (2008).
- M. Fishman, S. R. White, and E. M. Stoudenmire, The ITensor Software Library for Tensor Network Calculations, SciPost Phys. Codebases , 4 (2022a).
- A. Lucas, Ising formulations of many np problems, Frontiers in Physics 2, 10.3389/fphy.2014.00005 (2014).
- A. McLachlan, A variational solution of the time-dependent schrodinger equation, Molecular Physics 8, 39 (1964).
- J. Johansson, P. Nation, and F. Nori, Qutip: An open-source python framework for the dynamics of open quantum systems, Computer Physics Communications 183, 1760 (2012).
- J. Johansson, P. Nation, and F. Nori, Qutip 2: A python framework for the dynamics of open quantum systems, Computer Physics Communications 184, 1234 (2013).
- M. Fishman, S. R. White, and E. M. Stoudenmire, Codebase release 0.3 for ITensor, SciPost Phys. Codebases , 4 (2022b).
- K. L. Pudenz, T. Albash, and D. A. Lidar, Error-corrected quantum annealing with hundreds of qubits, Nature Communications 5, 3243 (2014).
- A. del Campo and K. Kim, Focus on shortcuts to adiabaticity, New Journal of Physics 21, 050201 (2019).
- K. Takahashi, Shortcuts to adiabaticity for quantum annealing, Phys. Rev. A 95, 012309 (2017).
- D. Sels and A. Polkovnikov, Minimizing irreversible losses in quantum systems by local counterdiabatic driving, Proceedings of the National Academy of Sciences 114, E3909 (2017).
- H. Nishi, T. Kosugi, and Y.-i. Matsushita, Implementation of quantum imaginary-time evolution method on nisq devices by introducing nonlocal approximation, npj Quantum Information 7, 85 (2021).
- D. Wolpert and W. Macready, No free lunch theorems for optimization, IEEE Transactions on Evolutionary Computation 1, 67 (1997).