Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On a conjecture of Tokushige for cross-$t$-intersecting families (2410.22792v1)

Published 30 Oct 2024 in math.CO

Abstract: Two families of sets $\mathcal{A}$ and $\mathcal{B}$ are called cross-$t$-intersecting if $|A\cap B|\ge t$ for all $A\in \mathcal{A}$, $B\in \mathcal{B}$. An active problem in extremal set theory is to determine the maximum product of sizes of cross-$t$-intersecting families. This incorporates the classical Erd\H{o}s--Ko--Rado (EKR) problem. In the present paper, we prove that if $\mathcal{A}$ and $\mathcal{B}$ are cross-$t$-intersecting families of $\binom {[n]}k$ with $k\ge t\ge 3$ and $n\ge (t+1)(k-t+1)$, then $|\mathcal{A}||\mathcal{B}|\le {\binom{n-t}{k-t}}2$; moreover, if $n>(t+1)(k-t+1)$, then equality holds if and only if $\mathcal{A}=\mathcal{B}$ is a maximum $t$-intersecting subfamily of $\binom{[n]}{k}$. This confirms a conjecture of Tokushige for $t\ge 3$.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (7)
  1. R. Ahlswede and L. H. Khachatrian. The Complete Nontrivial-Intersection Theorem for Systems of Finite Sets, J. Combin. Theory Ser. A 76 (1996) 121–138.
  2. P. Borg. The maximum product of sizes of cross-t𝑡titalic_t-intersecting uniform families, Australasian Journal of Combinatorics 60(1) (2014) 69–78.
  3. P. Borg. The maximum product of weights of cross-intersecting families, Journal of the London Mathematical Society 94 (2016) 993-1018.
  4. L. Pyber. A new generalization of the Erdős-Ko-Rado theorem, J. Combin. Theory Ser. A 43 (1986) 85–90.
  5. E. Sperner. Ein satz über untermengen einer endlichen Menge, Math. Z. 27 (1928) 544–5488.
  6. J. Wang and H. J. Zhang. Nontrivial independent sets of bipartite graphs and cross-intersecting families, J. Combin. Theory Ser. A 120 (2013) 129–141.
  7. R. M. Wilson. The exact bound in the Erdős–Ko–Rado theorem, Combinatorica 4 (1984) 247–257.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com