Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Convex Formulations for Training Two-Layer ReLU Neural Networks (2410.22311v2)

Published 29 Oct 2024 in cs.LG and math.OC

Abstract: Solving non-convex, NP-hard optimization problems is crucial for training machine learning models, including neural networks. However, non-convexity often leads to black-box machine learning models with unclear inner workings. While convex formulations have been used for verifying neural network robustness, their application to training neural networks remains less explored. In response to this challenge, we reformulate the problem of training infinite-width two-layer ReLU networks as a convex completely positive program in a finite-dimensional (lifted) space. Despite the convexity, solving this problem remains NP-hard due to the complete positivity constraint. To overcome this challenge, we introduce a semidefinite relaxation that can be solved in polynomial time. We then experimentally evaluate the tightness of this relaxation, demonstrating its competitive performance in test accuracy across a range of classification tasks.

Summary

We haven't generated a summary for this paper yet.