Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
117 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

ATLAS: Adapting Trajectory Lengths and Step-Size for Hamiltonian Monte Carlo (2410.21587v1)

Published 28 Oct 2024 in stat.CO, cs.LG, and stat.ML

Abstract: Hamiltonian Monte-Carlo (HMC) and its auto-tuned variant, the No U-Turn Sampler (NUTS) can struggle to accurately sample distributions with complex geometries, e.g., varying curvature, due to their constant step size for leapfrog integration and fixed mass matrix. In this work, we develop a strategy to locally adapt the step size parameter of HMC at every iteration by evaluating a low-rank approximation of the local Hessian and estimating its largest eigenvalue. We combine it with a strategy to similarly adapt the trajectory length by monitoring the no U-turn condition, resulting in an adaptive sampler, ATLAS: adapting trajectory length and step-size. We further use a delayed rejection framework for making multiple proposals that improves the computational efficiency of ATLAS, and develop an approach for automatically tuning its hyperparameters during warmup. We compare ATLAS with state-of-the-art samplers like NUTS on a suite of synthetic and real world examples, and show that i) unlike NUTS, ATLAS is able to accurately sample difficult distributions with complex geometries, ii) it is computationally competitive to NUTS for simpler distributions, and iii) it is more robust to the tuning of hyperparamters.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com