Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
38 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Can Machines Think Like Humans? A Behavioral Evaluation of LLM-Agents in Dictator Games (2410.21359v2)

Published 28 Oct 2024 in cs.CL, cs.AI, cs.CY, cs.LG, econ.GN, and q-fin.EC

Abstract: As LLM-based agents increasingly undertake real-world tasks and engage with human society, how well do we understand their behaviors? We (1) investigate how LLM agents' prosocial behaviors -- a fundamental social norm -- can be induced by different personas and benchmarked against human behaviors; and (2) introduce a behavioral and social science approach to evaluate LLM agents' decision-making. We explored how different personas and experimental framings affect these AI agents' altruistic behavior in dictator games and compared their behaviors within the same LLM family, across various families, and with human behaviors. The findings reveal substantial variations and inconsistencies among LLMs and notable differences compared to human behaviors. Merely assigning a human-like identity to LLMs does not produce human-like behaviors. Despite being trained on extensive human-generated data, these AI agents are unable to capture the internal processes of human decision-making. Their alignment with human is highly variable and dependent on specific model architectures and prompt formulations; even worse, such dependence does not follow a clear pattern. LLMs can be useful task-specific tools but are not yet intelligent human-like agents.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Ji Ma (72 papers)
X Twitter Logo Streamline Icon: https://streamlinehq.com