Standalone mobile quantum memory system (2410.21209v1)
Abstract: We present the implementation and performance analysis of a portable, rack-mounted standalone warm vapor quantum memory system, that also includes the laser package, control electronics and data processing hardware. The optical memory is based on long-lived hyperfine ground states of Cesium which are connected to an excited state via the $D_1$ line at 895 nm in a $\Lambda$-configuration. The memory is operated with weak coherent pulses containing on average $<1$ photons per pulse. The long-term stability of the memory efficiency and storage fidelity is demonstrated at the single-photon level together with operation in a non-laboratory environment.
- E. Gouzien and N. Sangouard, Phys. Rev. Lett. 127, 140503 (2021).
- M. Gündoğan, T. Jennewein, F. K. Asadi, E. D. Ros, E. Sağlamyürek, D. Oblak, T. Vogl, D. Rieländer, J. Sidhu, S. Grandi, L. Mazzarella, J. Wallnöfer, P. Ledingham, L. LeBlanc, M. Mazzera, M. Mohageg, J. Wolters, A. Ling, M. Atatüre, H. de Riedmatten, D. Oi, C. Simon, and M. Krutzik, “Topical white paper: A case for quantum memories in space,” (2021), arXiv:2111.09595 .
- L. Heller, Exploring quantum memory schemes in cold atoms for quantum repeaters, Phd thesis, Universitat Politècnica de Catalunya (2023).
- M. J. Klein, Slow and Stored Light in Atomic Vapor Cells, Phd thesis, Harvard University (2009).
- S. Massar and S. Popescu, Phys. Rev. Lett. 74, 1259 (1995).
- A. Peres, Fortschritte der Physik 51, 458 (2003).
- D. Dieks, Physics Letters A 92, 271 (1982).
- W. K. Wootters and W. H. Zurek, Nature 299, 802 (1982).
Collections
Sign up for free to add this paper to one or more collections.