Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
123 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
51 tokens/sec
2000 character limit reached

A Globally Optimal Portfolio for m-Sparse Sharpe Ratio Maximization (2410.21100v1)

Published 28 Oct 2024 in math.OC

Abstract: The Sharpe ratio is an important and widely-used risk-adjusted return in financial engineering. In modern portfolio management, one may require an m-sparse (no more than m active assets) portfolio to save managerial and financial costs. However, few existing methods can optimize the Sharpe ratio with the m-sparse constraint, due to the nonconvexity and the complexity of this constraint. We propose to convert the m-sparse fractional optimization problem into an equivalent m-sparse quadratic programming problem. The semi-algebraic property of the resulting objective function allows us to exploit the Kurdyka-Lojasiewicz property to develop an efficient Proximal Gradient Algorithm (PGA) that leads to a portfolio which achieves the globally optimal m-sparse Sharpe ratio under certain conditions. The convergence rates of PGA are also provided. To the best of our knowledge, this is the first proposal that achieves a globally optimal m-sparse Sharpe ratio with a theoretically-sound guarantee.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.