Effective Action and Gravitational Pair Production in (A)dS Spacetime (2410.20949v1)
Abstract: We compute the effective action for a massive scalar field in (A)dS spacetime using the Euclidean heat kernel method. We highlight that in even-dimensional dS spacetimes, the effective action exhibits a non-trivial imaginary part, reminiscent of the Schwinger effect in quantum electrodynamics. We find consistency between the results obtained from the Euclidean heat kernel method with those from the Green's function approach in Lorentzian signature. Additionally, we compare our results with the perturbative calculations and find that the perturbation theory almost fails to capture the correct non-perturbative imaginary part of the effective action. This discrepancy presents a challenge to computing the gravitational pair production using the perturbation theory.
- S. W. Hawking, “Particle Creation by Black Holes,” Commun. Math. Phys., vol. 43, pp. 199–220, 1975. [Erratum: Commun.Math.Phys. 46, 206 (1976)].
- J. Schwinger, “On gauge invariance and vacuum polarization,” Phys. Rev., vol. 82, pp. 664–679, Jun 1951.
- D. N. Page, “Hawking radiation and black hole thermodynamics,” New J. Phys., vol. 7, p. 203, 2005.
- M. F. Wondrak, W. D. van Suijlekom, and H. Falcke, “Gravitational pair production and black hole evaporation,” Phys. Rev. Lett., vol. 130, p. 221502, Jun 2023.
- M. D. Schwartz, Quantum Field Theory and the Standard Model. Cambridge University Press, 2013.
- 6 2004.
- A. Ferreiro, J. Navarro-Salas, and S. Pla, “Comment on ”Gravitational Pair Production and Black Hole Evaporation”,” 6 2023.
- M. F. Wondrak, W. D. van Suijlekom, and H. Falcke, “Reply to ”Comment on ’Gravitational Pair Production and Black Hole Evaporation”’,” 8 2023.
- M. P. Hertzberg and A. Loeb, “Inconsistency with De Sitter Spacetime of ”Gravitational Pair Production and Black Hole Evaporation”,” 7 2023.
- E. T. Akhmedov, D. V. Diakonov, and C. Schubert, “Complex effective actions and gravitational pair creation,” 7 2024.
- L. Parker and A. Raval, “Nonperturbative effects of vacuum energy on the recent expansion of the universe,” Phys. Rev. D, vol. 60, p. 063512, 1999. [Erratum: Phys.Rev.D 67, 029901 (2003)].
- L. Parker and A. Raval, “New quantum aspects of a vacuum dominated universe,” Phys. Rev. D, vol. 62, p. 083503, 2000. [Erratum: Phys.Rev.D 67, 029903 (2003)].
- A. Dobado and A. L. Maroto, “Particle production from nonlocal gravitational effective action,” Physical Review D, vol. 60, Oct. 1999.
- M. Fukuma, S. Sugishita, and Y. Sakatani, “Propagators in de sitter space,” Physical Review D, vol. 88, July 2013.
- G. W. Gibbons and S. W. Hawking, “Cosmological Event Horizons, Thermodynamics, and Particle Creation,” Phys. Rev. D, vol. 15, pp. 2738–2751, 1977.
- A. Das and G. V. Dunne, “Large-order perturbation theory and de sitter/anti–de sitter effective actions,” Physical Review D, vol. 74, Aug. 2006.
- S. P. Kim, “Vacuum structure of de sitter space,” 2010.
- E. Akhmedov, K. Bazarov, D. Diakonov, U. Moschella, F. Popov, and C. Schubert, “Propagators and gaussian effective actions in various patches of de sitter space,” Physical Review D, vol. 100, Nov. 2019.
- V. Mukhanov and S. Winitzki, Introduction to quantum effects in gravity. Cambridge University Press, 6 2007.
- E. Alvarez and J. Anero, “Covariant techniques in quantum field theory,” 2022.
- D. Vassilevich, “Heat kernel expansion: user’s manual,” Physics Reports, vol. 388, p. 279–360, Dec. 2003.
- I. Avramidi, Heat Kernel Method and its Applications. 11 2015.
- C. Yu and F. Zhao, “Heat kernel recurrence on space forms and applications,” 2018.
- L. Parker and D. Toms, Quantum Field Theory in Curved Spacetime: Quantized Fields and Gravity. Cambridge Monographs on Mathematical Physics, Cambridge University Press, 2009.
- N. D. Birrell and P. C. W. Davies, Quantum Fields in Curved Space. Cambridge Monographs on Mathematical Physics, Cambridge, UK: Cambridge Univ. Press, 2 1984.
- A. O. Barvinsky and G. A. Vilkovisky, “Covariant perturbation theory. 2: Second order in the curvature. General algorithms,” Nucl. Phys. B, vol. 333, pp. 471–511, 1990.
- B. K. El-Menoufi, “Quantum gravity of Kerr-Schild spacetimes and the logarithmic correction to Schwarzschild black hole entropy,” JHEP, vol. 05, p. 035, 2016.
- L. Parker and D. J. Toms, “New Form for the Coincidence Limit of the Feynman Propagator, or Heat Kernel, in Curved Space-time,” Phys. Rev. D, vol. 31, p. 953, 1985.
- I. Jack and L. Parker, “Proof of Summed Form of Proper Time Expansion for Propagator in Curved Space-time,” Phys. Rev. D, vol. 31, p. 2439, 1985.
- A. Ferreiro, J. Navarro-Salas, and S. Pla, “R-summed form of adiabatic expansions in curved spacetime,” Phys. Rev. D, vol. 101, no. 10, p. 105011, 2020.
- S. Ganguly, N. Banerjee, A. Bhattacharyya, and G. Manna, “Particle production rate for a dynamical system using the path integral approach,” 2024.
- H. Falcke, M. F. Wondrak, and W. D. van Suijlekom, “An upper limit to the lifetime of stellar remnants from gravitational pair production,” 2024.
Collections
Sign up for free to add this paper to one or more collections.