Loss vs Magnetization Threshold Phenomenon for Lorentz Nonreciprocity Induced by a Gyrotropic Particle Inside a Cavity (2410.20871v1)
Abstract: When a plasmonic particle is subject to a static magnetic field, ${B}{\rm dc}=B{0} \hat{z}$, its gyrotropic response gives rise to nonreciprocal dynamics of the entire ambient surroundings. This dynamics depends on the particle's excitation which in turn depends on the gyrotropic material damping rate $\Gamma$. Thus intuitively speaking, the heavier the gyrotropic material loss, the weaker the non-reciprocal response. This is indeed the case when the particle is located in free space. In this letter, we quantify nonreciprocity using the defined measure $\cal{R}$ and show that when the gyrotropic particle is placed inside a cavity, the nonreciprocity measure $\cal{R}$ is robust against material loss up to a certain loss threshold, $\Gamma_{th}$ that depends on the magnetic biasing $B_0$
- D. L. Sounas, J. Soric, and A. Alù, Broadband passive isolators based on coupled nonlinear resonances, Nature Electronics 1, 113 (2018).
- M. Lawrence, D. R. I. Barton, and J. A. Dionne, Nonreciprocal flat optics with silicon metasurfaces, Nano Letters 18, 1104 (2018), pMID: 29369641, https://doi.org/10.1021/acs.nanolett.7b04646 .
- O. Silbiger and Y. Hadad, One-way acoustic guiding under transverse fluid flow, Phys. Rev. Appl. 17, 064058 (2022).
- O. A. Godin, Reciprocity and energy theorems for waves in a compressible inhomogeneous moving fluid, Wave Motion 25, 143 (1997).
- T. A. Morgado and M. G. Silveirinha, Nonlocal effects and enhanced nonreciprocity in current-driven graphene systems, Phys. Rev. B 102, 075102 (2020).
- D. M. Pozar, Microwave Engineering, 4th ed. (Wiley, 2011) Chap. 9.
- G. Rodrigue, A generation of microwave ferrite devices, Proceedings of the IEEE 76, 121 (1988).
- A. Zvezdin and V. Kotov, Modern Magnetooptics and Magnetooptical Materials, 1st ed. (CRC Press, 1997).
- J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, 1998).
- T. H. Stix, Waves in Plasmas (American Institute of Physics, 1992).
- D. L. Sounas and C. Caloz, Gyrotropy and nonreciprocity of graphene for microwave applications, IEEE Trans. Microw. Theory Tech. 60, 901 (2012).
- Y. Hadad and B. Z. Steinberg, Magnetized spiral chains of plasmonic ellipsoids for one-way optical waveguides, Physical Review Letters 105, 233904 (2010).
- M. A. Sentef, M. Ruggenthaler, and A. Rubio, Cavity quantum-electrodynamical purcell effect in 2d materials, Science Advances 4, eaau6969 (2018).
- F. Schlawin, A. Cavalleri, and D. Jaksch, Cavity-mediated electron-photon superconductivity, Phys. Rev. Lett. 122, 133602 (2019).
- F. Mivehvar, H. Ritsch, and F. Piazza, Superradiant topological peierls insulator, Phys. Rev. Lett. 118, 073602 (2017).
- O. Dmytruk and M. Schirò, Controlling topological phases of matter with quantum light, Communications Physics 5, Article 271 (2022).
- Supplemental Material.
- K.-E. Sadzi and Y. Hadad, The mutual dynamics of a resonant particle inside rectangular cavity: Collective polarizability calculation via a ladder-type alternative green’s functions approach (2024), preprint.
- R. E. Collin, Field Theory of Guided Waves, 2nd ed. (McGraw-Hill, IEEE, 1991).
- V. H. Rumsey, Reaction concept in electromagnetic theory, Physical Review 94, 1483 (1954).
- J. A. Kong, Theorems of bianisotropic media, Proceedings of the IEEE 60, 1036 (1972).
- J. Scheuer and A. Yariv, Sagnac effect in coupled-resonator slow-light waveguide structures, Phys. Rev. Lett. 96, 053901 (2006).
- R. Novitski, B. Z. Steinberg, and J. Scheuer, Losses in rotating degenerate cavities and a coupled-resonator optical-waveguide rotation sensor, Phys. Rev. A 85, 023813 (2012).
- K.-E. Sadzi and Y. Hadad, “The mutual dynamics of a resonant particle inside rectangular cavity: Collective polarizability calculation via a ladder-type alternative Green’s functions approach,” preprint (2024).
- V. H. Rumsey, “Reaction Concept in Electromagnetic Theory,” Physical Review 94, 1483–1491 (1954).
- J. A. Kong, “Theorems of Bianisotropic Media,” Proceedings of the IEEE 60, 1036–1046 (1972).
Collections
Sign up for free to add this paper to one or more collections.