Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 93 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 28 tok/s
GPT-5 High 36 tok/s Pro
GPT-4o 105 tok/s
GPT OSS 120B 476 tok/s Pro
Kimi K2 214 tok/s Pro
2000 character limit reached

Loss vs Magnetization Threshold Phenomenon for Lorentz Nonreciprocity Induced by a Gyrotropic Particle Inside a Cavity (2410.20871v1)

Published 28 Oct 2024 in physics.app-ph

Abstract: When a plasmonic particle is subject to a static magnetic field, ${B}{\rm dc}=B{0} \hat{z}$, its gyrotropic response gives rise to nonreciprocal dynamics of the entire ambient surroundings. This dynamics depends on the particle's excitation which in turn depends on the gyrotropic material damping rate $\Gamma$. Thus intuitively speaking, the heavier the gyrotropic material loss, the weaker the non-reciprocal response. This is indeed the case when the particle is located in free space. In this letter, we quantify nonreciprocity using the defined measure $\cal{R}$ and show that when the gyrotropic particle is placed inside a cavity, the nonreciprocity measure $\cal{R}$ is robust against material loss up to a certain loss threshold, $\Gamma_{th}$ that depends on the magnetic biasing $B_0$

Definition Search Book Streamline Icon: https://streamlinehq.com
References (26)
  1. D. L. Sounas, J. Soric, and A. Alù, Broadband passive isolators based on coupled nonlinear resonances, Nature Electronics 1, 113 (2018).
  2. M. Lawrence, D. R. I. Barton, and J. A. Dionne, Nonreciprocal flat optics with silicon metasurfaces, Nano Letters 18, 1104 (2018), pMID: 29369641, https://doi.org/10.1021/acs.nanolett.7b04646 .
  3. O. Silbiger and Y. Hadad, One-way acoustic guiding under transverse fluid flow, Phys. Rev. Appl. 17, 064058 (2022).
  4. O. A. Godin, Reciprocity and energy theorems for waves in a compressible inhomogeneous moving fluid, Wave Motion 25, 143 (1997).
  5. T. A. Morgado and M. G. Silveirinha, Nonlocal effects and enhanced nonreciprocity in current-driven graphene systems, Phys. Rev. B 102, 075102 (2020).
  6. D. M. Pozar, Microwave Engineering, 4th ed. (Wiley, 2011) Chap. 9.
  7. G. Rodrigue, A generation of microwave ferrite devices, Proceedings of the IEEE 76, 121 (1988).
  8. A. Zvezdin and V. Kotov, Modern Magnetooptics and Magnetooptical Materials, 1st ed. (CRC Press, 1997).
  9. J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, 1998).
  10. T. H. Stix, Waves in Plasmas (American Institute of Physics, 1992).
  11. D. L. Sounas and C. Caloz, Gyrotropy and nonreciprocity of graphene for microwave applications, IEEE Trans. Microw. Theory Tech. 60, 901 (2012).
  12. Y. Hadad and B. Z. Steinberg, Magnetized spiral chains of plasmonic ellipsoids for one-way optical waveguides, Physical Review Letters 105, 233904 (2010).
  13. M. A. Sentef, M. Ruggenthaler, and A. Rubio, Cavity quantum-electrodynamical purcell effect in 2d materials, Science Advances 4, eaau6969 (2018).
  14. F. Schlawin, A. Cavalleri, and D. Jaksch, Cavity-mediated electron-photon superconductivity, Phys. Rev. Lett. 122, 133602 (2019).
  15. F. Mivehvar, H. Ritsch, and F. Piazza, Superradiant topological peierls insulator, Phys. Rev. Lett. 118, 073602 (2017).
  16. O. Dmytruk and M. Schirò, Controlling topological phases of matter with quantum light, Communications Physics 5, Article 271 (2022).
  17. Supplemental Material.
  18. K.-E. Sadzi and Y. Hadad, The mutual dynamics of a resonant particle inside rectangular cavity: Collective polarizability calculation via a ladder-type alternative green’s functions approach (2024), preprint.
  19. R. E. Collin, Field Theory of Guided Waves, 2nd ed. (McGraw-Hill, IEEE, 1991).
  20. V. H. Rumsey, Reaction concept in electromagnetic theory, Physical Review 94, 1483 (1954).
  21. J. A. Kong, Theorems of bianisotropic media, Proceedings of the IEEE 60, 1036 (1972).
  22. J. Scheuer and A. Yariv, Sagnac effect in coupled-resonator slow-light waveguide structures, Phys. Rev. Lett. 96, 053901 (2006).
  23. R. Novitski, B. Z. Steinberg, and J. Scheuer, Losses in rotating degenerate cavities and a coupled-resonator optical-waveguide rotation sensor, Phys. Rev. A 85, 023813 (2012).
  24. K.-E. Sadzi and Y. Hadad, “The mutual dynamics of a resonant particle inside rectangular cavity: Collective polarizability calculation via a ladder-type alternative Green’s functions approach,” preprint (2024).
  25. V. H. Rumsey, “Reaction Concept in Electromagnetic Theory,” Physical Review 94, 1483–1491 (1954).
  26. J. A. Kong, “Theorems of Bianisotropic Media,” Proceedings of the IEEE 60, 1036–1046 (1972).
Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube