Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Insights into Automated Optimization with Large Language Models and Evolutionary Algorithms (2410.20848v1)

Published 28 Oct 2024 in cs.NE and cs.AI

Abstract: Designing optimization approaches, whether heuristic or meta-heuristic, usually demands extensive manual intervention and has difficulty generalizing across diverse problem domains. The combination of LLMs and Evolutionary Algorithms (EAs) offers a promising new approach to overcome these limitations and make optimization more automated. In this setup, LLMs act as dynamic agents that can generate, refine, and interpret optimization strategies, while EAs efficiently explore complex solution spaces through evolutionary operators. Since this synergy enables a more efficient and creative search process, we first conduct an extensive review of recent research on the application of LLMs in optimization. We focus on LLMs' dual functionality as solution generators and algorithm designers. Then, we summarize the common and valuable designs in existing work and propose a novel LLM-EA paradigm for automated optimization. Furthermore, centered on this paradigm, we conduct an in-depth analysis of innovative methods for three key components: individual representation, variation operators, and fitness evaluation. We address challenges related to heuristic generation and solution exploration, especially from the LLM prompts' perspective. Our systematic review and thorough analysis of the paradigm can assist researchers in better understanding the current research and promoting the development of combining LLMs with EAs for automated optimization.

Summary

We haven't generated a summary for this paper yet.