Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

GNNRL-Smoothing: A Prior-Free Reinforcement Learning Model for Mesh Smoothing (2410.19834v1)

Published 19 Oct 2024 in cs.LG, cs.AI, and cs.CV

Abstract: Mesh smoothing methods can enhance mesh quality by eliminating distorted elements, leading to improved convergence in simulations. To balance the efficiency and robustness of traditional mesh smoothing process, previous approaches have employed supervised learning and reinforcement learning to train intelligent smoothing models. However, these methods heavily rely on labeled dataset or prior knowledge to guide the models' learning. Furthermore, their limited capacity to enhance mesh connectivity often restricts the effectiveness of smoothing. In this paper, we first systematically analyze the learning mechanisms of recent intelligent smoothing methods and propose a prior-free reinforcement learning model for intelligent mesh smoothing. Our proposed model integrates graph neural networks with reinforcement learning to implement an intelligent node smoothing agent and introduces, for the first time, a mesh connectivity improvement agent. We formalize mesh optimization as a Markov Decision Process and successfully train both agents using Twin Delayed Deep Deterministic Policy Gradient and Double Dueling Deep Q-Network in the absence of any prior data or knowledge. We verified the proposed model on both 2D and 3D meshes. Experimental results demonstrate that our model achieves feature-preserving smoothing on complex 3D surface meshes. It also achieves state-of-the-art results among intelligent smoothing methods on 2D meshes and is 7.16 times faster than traditional optimization-based smoothing methods. Moreover, the connectivity improvement agent can effectively enhance the quality distribution of the mesh.

Summary

We haven't generated a summary for this paper yet.