Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A potpourri of results on molecular communication with active transport (2410.19411v1)

Published 25 Oct 2024 in cond-mat.stat-mech, cond-mat.soft, cs.ET, eess.SP, and physics.bio-ph

Abstract: Molecular communication (MC) is a model of information transmission where the signal is transmitted by information-carrying molecules through their physical transport from a transmitter to a receiver through a communication channel. Prior efforts have identified suitable "information molecules" whose efficacy for signal transmission has been studied extensively in diffusive channels (DC). Although easy to implement, DCs are inefficient for distances longer than tens of nanometers. In contrast, molecular motor-driven nonequilibrium or active transport can drastically increase the range of communication and may permit efficient communication up to tens of micrometers. In this paper, we investigate how active transport influences the efficacy of molecular communication, quantified by the mutual information between transmitted and received signals. We consider two specific scenarios: (a) active transport through relays and (b) active transport through a mixture of active and diffusing particles. In each case, we discuss the efficacy of the communication channel and discuss their potential pitfalls.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (43)
  1. N. Farsad, H. B. Yilmaz, A. Eckford, C.-B. Chae, and W. Guo, “A comprehensive survey of recent advancements in molecular communication,” IEEE Communications Surveys & Tutorials, vol. 18, no. 3, pp. 1887–1919, 2016.
  2. N. Farsad, W. Guo, and A. W. Eckford, “Tabletop molecular communication: Text messages through chemical signals,” PloS one, vol. 8, no. 12, p. e82935, 2013.
  3. M. Gregori and I. F. Akyildiz, “A new nanonetwork architecture using flagellated bacteria and catalytic nanomotors,” IEEE Journal on selected areas in communications, vol. 28, no. 4, pp. 612–619, 2010.
  4. L. C. Cobo and I. F. Akyildiz, “Bacteria-based communication in nanonetworks,” Nano Communication Networks, vol. 1, no. 4, pp. 244–256, 2010.
  5. S. Hiyama, R. Gojo, T. Shima, S. Takeuchi, and K. Sutoh, “Biomolecular-motor-based nano-or microscale particle translocations on dna microarrays,” Nano Letters, vol. 9, no. 6, pp. 2407–2413, 2009.
  6. S. Hiyama, Y. Moritani, R. Gojo, S. Takeuchi, and K. Sutoh, “Biomolecular-motor-based autonomous delivery of lipid vesicles as nano-or microscale reactors on a chip,” Lab on a Chip, vol. 10, no. 20, pp. 2741–2748, 2010.
  7. S. Hiyama and Y. Moritani, “Molecular communication: Harnessing biochemical materials to engineer biomimetic communication systems,” Nano Communication Networks, vol. 1, no. 1, pp. 20–30, Mar. 2010. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S1878778910000074
  8. A. Enomoto, M. J. Moore, T. Suda, and K. Oiwa, “Design of self-organizing microtubule networks for molecular communication,” Nano Communication Networks, vol. 2, no. 1, pp. 16–24, 2011.
  9. T. Nitta, A. Tanahashi, M. Hirano, and H. Hess, “Simulating molecular shuttle movements: Towards computer-aided design of nanoscale transport systems,” Lab on a Chip, vol. 6, no. 7, pp. 881–885, 2006.
  10. T. Nitta, A. Tanahashi, and M. Hirano, “In silico design and testing of guiding tracks for molecular shuttles powered by kinesin motors,” Lab on a Chip, vol. 10, no. 11, pp. 1447–1453, 2010.
  11. K. E. Byun, K. Heo, S. Shim, H. J. Choi, and S. Hong, “Functionalization of silicon nanowires with actomyosin motor protein for bioinspired nanomechanical applications,” Small, vol. 5, no. 23, pp. 2659–2664, 2009.
  12. J. Ikuta, N. K. Kamisetty, H. Shintaku, H. Kotera, T. Kon, and R. Yokokawa, “Tug-of-war of microtubule filaments at the boundary of a kinesin-and dynein-patterned surface,” Scientific reports, vol. 4, no. 1, p. 5281, 2014.
  13. D. Steuerwald, S. M. Früh, R. Griss, R. D. Lovchik, and V. Vogel, “Nanoshuttles propelled by motor proteins sequentially assemble molecular cargo in a microfluidic device,” Lab on a Chip, vol. 14, no. 19, pp. 3729–3738, 2014.
  14. M. J. Moore, T. Suda, and K. Oiwa, “Molecular communication: Modeling noise effects on information rate,” IEEE transactions on nanobioscience, vol. 8, no. 2, pp. 169–180, 2009.
  15. N. Farsad, A. W. Eckford, S. Hiyama, and Y. Moritani, “A simple mathematical model for information rate of active transport molecular communication,” in 2011 IEEE conference on computer communications workshops (INFOCOM WKSHPS).   IEEE, 2011, pp. 473–478.
  16. N. Farsad, A. W. Eckford, and S. Hiyama, “A mathematical channel optimization formula for active transport molecular communication,” in 2012 IEEE International Conference on Communications (ICC).   IEEE, 2012, pp. 6137–6141.
  17. ——, “A markov chain channel model for active transport molecular communication,” IEEE Transactions on Signal Processing, vol. 62, no. 9, pp. 2424–2436, 2014.
  18. J. Selimkhanov, B. Taylor, J. Yao, A. Pilko, J. Albeck, A. Hoffmann, L. Tsimring, and R. Wollman, “Accurate information transmission through dynamic biochemical signaling networks,” Science, vol. 346, no. 6215, pp. 1370–1373, Dec. 2014, publisher: American Association for the Advancement of Science Section: Report. [Online]. Available: https://science.sciencemag.org/content/346/6215/1370
  19. ——, “Accurate Information Transmission Through Dynamic Biochemical Signaling Networks,” Science, vol. 346, no. 6215, pp. 1370–1373, Dec. 2014. [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4813785/
  20. G. Aminian, H. Arjmandi, A. Gohari, M. Nasiri-Kenari, and U. Mitra, “Capacity of Diffusion-Based Molecular Communication Networks Over LTI-Poisson Channels,” IEEE Transactions on Molecular, Biological and Multi-Scale Communications, vol. 1, no. 2, pp. 188–201, Jun. 2015, conference Name: IEEE Transactions on Molecular, Biological and Multi-Scale Communications.
  21. M. Pierobon and I. F. Akyildiz, “Capacity of a Diffusion-Based Molecular Communication System With Channel Memory and Molecular Noise,” IEEE Trans. Inform. Theory, vol. 59, no. 2, pp. 942–954, Feb. 2013. [Online]. Available: http://ieeexplore.ieee.org/document/6305481/
  22. D. Arifler, “Capacity analysis of a diffusion-based short-range molecular nano-communication channel,” Computer Networks, vol. 55, no. 6, pp. 1426–1434, Apr. 2011. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S1389128610003919
  23. N. Hao, B. A. Budnik, J. Gunawardena, and E. K. O’Shea, “Tunable signal processing through modular control of transcription factor translocation,” Science, vol. 339, no. 6118, pp. 460–464, Jan. 2013.
  24. A. Hoffmann, A. Levchenko, M. L. Scott, and D. Baltimore, “The IkappaB-NF-kappaB signaling module: temporal control and selective gene activation,” Science, vol. 298, no. 5596, pp. 1241–1245, Nov. 2002.
  25. S. D. M. Santos, P. J. Verveer, and P. I. H. Bastiaens, “Growth factor-induced MAPK network topology shapes Erk response determining PC-12 cell fate,” Nat. Cell Biol., vol. 9, no. 3, pp. 324–330, Mar. 2007.
  26. J. E. Purvis and G. Lahav, “Encoding and decoding cellular information through signaling dynamics,” Cell, vol. 152, no. 5, pp. 945–956, Feb. 2013.
  27. W. H. de Ronde, F. Tostevin, and P. R. ten Wolde, “Effect of feedback on the fidelity of information transmission of time-varying signals,” Phys Rev E Stat Nonlin Soft Matter Phys, vol. 82, no. 3 Pt 1, p. 031914, Sep. 2010.
  28. F. Tostevin and P. R. ten Wolde, “Mutual information between input and output trajectories of biochemical networks,” Phys. Rev. Lett., vol. 102, no. 21, p. 218101, May 2009.
  29. P. B. Dieterle, J. Min, D. Irimia, and A. Amir, “Dynamics of diffusive cell signaling relays,” bioRxiv, p. 2019.12.27.887273, Dec. 2019, publisher: Cold Spring Harbor Laboratory Section: New Results. [Online]. Available: https://www.biorxiv.org/content/10.1101/2019.12.27.887273v1
  30. R. Cheong, A. Rhee, C. J. Wang, I. Nemenman, and A. Levchenko, “Information transduction capacity of noisy biochemical signaling networks,” Science, vol. 334, no. 6054, pp. 354–358, Oct. 2011.
  31. G. Tkačik and W. Bialek, “Information Processing in Living Systems,” Annual Review of Condensed Matter Physics, vol. 7, no. 1, pp. 89–117, 2016, _eprint: https://doi.org/10.1146/annurev-conmatphys-031214-014803. [Online]. Available: https://doi.org/10.1146/annurev-conmatphys-031214-014803
  32. P. Dieterle, J. Min, D. Irimia, and A. Amir, “Dynamics of diffusive cell signaling relays,” bioRxiv, 2019.
  33. S. Kadloor, R. S. Adve, and A. W. Eckford, “Molecular communication using brownian motion with drift,” IEEE Transactions on NanoBioscience, vol. 11, no. 2, pp. 89–99, 2012.
  34. S. Sarkar, M. Z. Ali, and S. Choubey, “Efficacy of information transmission in cellular communication,” Physical Review Research, vol. 5, no. 1, p. 013092, 2023.
  35. P. B. Dieterle, J. Min, D. Irimia, and A. Amir, “Dynamics of diffusive cell signaling relays,” Elife, vol. 9, p. e61771, 2020.
  36. S. Ramaswamy, “The mechanics and statistics of active matter,” Annu. Rev. Condens. Matter Phys., vol. 1, no. 1, pp. 323–345, 2010.
  37. R. Milo, P. Jorgensen, U. Moran, G. Weber, and M. Springer, “Bionumbers—the database of key numbers in molecular and cell biology,” Nucleic acids research, vol. 38, no. suppl_1, pp. D750–D753, 2010.
  38. J. Strickland, D. Pan, C. Godfrey, J. S. Kim, A. Hopke, M. Degrange, B. Villavicencio, M. K. Mansour, C. S. Zerbe, D. Irimia et al., “Self-extinguishing relay waves enable homeostatic control of human neutrophil swarming,” bioRxiv, 2023.
  39. T. Nakano, “Molecular communication: A 10 year retrospective,” IEEE Transactions on Molecular, Biological and Multi-Scale Communications, vol. 3, no. 2, pp. 71–78, 2017.
  40. P. Mehta and D. J. Schwab, “Energetic costs of cellular computation,” Proceedings of the National Academy of Sciences, vol. 109, no. 44, pp. 17 978–17 982, 2012.
  41. G. Tkačik and W. Bialek, “Information processing in living systems,” Annual Review of Condensed Matter Physics, vol. 7, pp. 89–117, 2016.
  42. C. M. Holmes and I. Nemenman, “Estimation of mutual information for real-valued data with error bars and controlled bias,” Physical Review E, vol. 100, no. 2, p. 022404, 2019.
  43. K. Mallick, “The exclusion process: A paradigm for non-equilibrium behaviour,” Physica A: Statistical Mechanics and its Applications, vol. 418, pp. 17–48, 2015.

Summary

We haven't generated a summary for this paper yet.