Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 105 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 41 tok/s
GPT-5 High 42 tok/s Pro
GPT-4o 104 tok/s
GPT OSS 120B 474 tok/s Pro
Kimi K2 256 tok/s Pro
2000 character limit reached

Enhancing Exchange Rate Forecasting with Explainable Deep Learning Models (2410.19241v2)

Published 25 Oct 2024 in cs.LG

Abstract: Accurate exchange rate prediction is fundamental to financial stability and international trade, positioning it as a critical focus in economic and financial research. Traditional forecasting models often falter when addressing the inherent complexities and non-linearities of exchange rate data. This study explores the application of advanced deep learning models, including LSTM, CNN, and transformer-based architectures, to enhance the predictive accuracy of the RMB/USD exchange rate. Utilizing 40 features across 6 categories, the analysis identifies TSMixer as the most effective model for this task. A rigorous feature selection process emphasizes the inclusion of key economic indicators, such as China-U.S. trade volumes and exchange rates of other major currencies like the euro-RMB and yen-dollar pairs. The integration of grad-CAM visualization techniques further enhances model interpretability, allowing for clearer identification of the most influential features and bolstering the credibility of the predictions. These findings underscore the pivotal role of fundamental economic data in exchange rate forecasting and highlight the substantial potential of machine learning models to deliver more accurate and reliable predictions, thereby serving as a valuable tool for financial analysis and decision-making.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (153)
  1. B. Dang, D. Ma, S. Li, Z. Qi, and E. Zhu, “Deep learning-based snore sound analysis for the detection of night-time breathing disorders,” Applied and Computational Engineering, vol. 76, 2024.
  2. B. Dang et al., “Real-time pill identification for the visually impaired using deep learning,” arXiv preprint arXiv:2405.05983, 2024.
  3. X. Song, D. Wu, B. Zhang, Z. Peng, B. Dang, F. Pan, and Z. Wu, “Zeroprompt: Streaming acoustic encoders are zero-shot masked lms,” in Proc. INTERSPEECH 2023, 2023, pp. 1648–1652.
  4. D. Ma, S. Li, B. Dang, H. Zang, and X. Dong, “Fostc3net: A lightweight yolov5 based on the network structure optimization,” Journal of Physics: Conference Series, no. 1, p. 012004, Aug. 2024.
  5. S. Li et al., “Utilizing the lightgbm algorithm for operator user credit assessment research,” Applied and Computational Engineering, vol. 75, no. 1, p. 36–47, Jul. 2024.
  6. Y. Chen and Y. Xiao, “Recent advancement of emotion cognition in large language models,” arxiv preprint, 2024.
  7. Y. Li et al., “Mpgraf: a modular and pre-trained graphformer for learning to rank at web-scale,” in ICDM.   IEEE, 2023, pp. 339–348.
  8. Z. Zhang et al., “Simultaneously detecting spatiotemporal changes with penalized poisson regression models,” arXiv:2405.06613, 2024.
  9. X. Li and S. Liu, “Predicting 30-day hospital readmission in medicare patients: Insights from an lstm deep learning model,” medRxiv, 2024.
  10. H. Zheng et al., “Identification of prognostic biomarkers for stage iii non-small cell lung carcinoma in female nonsmokers using machine learning,” arXiv preprint arXiv:2408.16068, 2024.
  11. Y. Li, H. Xiong, L. Kong, R. Zhang, D. Dou, and G. Chen, “Meta hierarchical reinforced learning to rank for recommendation: a comprehensive study in moocs,” in ECML PKDD, 2022, pp. 302–317.
  12. Q. Zhang et al., “Cu-net: a u-net architecture for efficient brain-tumor segmentation on brats 2019 dataset,” arXiv:2406.13113, 2024.
  13. Y. Li et al., “Mhrr: Moocs recommender service with meta hierarchical reinforced ranking,” IEEE Transactions on Services Computing, 2023.
  14. L. Wang et al., “Semi-supervised learning for k-dependence bayesian classifiers,” Applied Intelligence, pp. 1–19, 2022.
  15. Y. Li et al., “Coltr: Semi-supervised learning to rank with co-training and over-parameterization for web search,” IEEE Transactions on Knowledge and Data Engineering, pp. 12 542–12 555, 2023.
  16. X. Liu et al., “Enhancing skin lesion diagnosis with ensemble learning,” arXiv preprint arXiv:2409.04381, 2024.
  17. Y. Chen et al., “Do large language models have problem-solving capability under incomplete information scenarios?” in ACL, 2024.
  18. H. Xu et al., “Can speculative sampling accelerate react without compromising reasoning quality?” in The Second Tiny Papers Track at ICLR 2024, 2024.
  19. Y. Ji et al., “Rag-rlrc-laysum at biolaysumm: Integrating retrieval-augmented generation and readability control for layman summarization of biomedical texts,” arXiv preprint arXiv:2405.13179, 2024.
  20. Y. Ji, Z. Yu, and Y. Wang, “Assertion detection large language model in-context learning lora fine-tuning,” arXiv:2401.17602, 2024.
  21. Y. Ji et al., “Prediction of covid-19 patients’ emergency room revisit using multi-source transfer learning,” in ICHI, 2023, pp. 138–144.
  22. K. Li et al., “Optimizing automated picking systems in warehouse robots using machine learning,” arXiv:2408.16633, 2024.
  23. W. Bian et al., “A learnable variational model for joint multimodal mri reconstruction and synthesis,” in International Conference on Medical Image Computing and Computer-Assisted Intervention, 2022, pp. 354–364.
  24. ——, “An optimization-based meta-learning model for mri reconstruction with diverse dataset,” Journal of Imaging, vol. 7, no. 11, p. 231, 2021.
  25. Y. Qiao et al., “Robust domain generalization for multi-modal object recognition,” in AIEA, 2024, pp. 392–397.
  26. W. Bian et al., “Multi-task magnetic resonance imaging reconstruction using meta-learning,” arXiv preprint arXiv:2403.19966, 2024.
  27. K. Li et al., “Deep reinforcement learning-based obstacle avoidance for robot movement in warehouse environments,” arXiv preprint arXiv:2409.14972, 2024.
  28. W. Xubo et al., “Application of adaptive machine learning systems in heterogeneous data environments,” Global Academic Frontiers, 2024.
  29. J. Zhao et al., “Gender bias in large language models across multiple languages,” arXiv preprint arXiv:2403.00277, 2024.
  30. Y. Wang et al., “Gpt-signal: Generative ai for semi-automated feature engineering in the alpha research process,” in FinNLP and the 1st Agent AI for Scenario Planning, 2024, pp. 42–53.
  31. J. Zhao, Z. Qian, L. Cao, Y. Wang, and Y. Ding, “Bias and toxicity in role-play reasoning,” arXiv preprint arXiv:2409.13979, 2024.
  32. L. Xu et al., “Autonomous navigation of unmanned vehicle through deep reinforcement learning,” arXiv preprint arXiv:2407.18962, 2024.
  33. L. Lipeng et al., “Prioritized experience replay-based ddqn for unmanned vehicle path planning,” arXiv:2406.17286, 2024.
  34. H. Liu et al., “Td3 based collision free motion planning for robot navigation,” arXiv preprint arXiv:2405.15460, 2024.
  35. J. Xiang, V. Amaya, and J. Chen, “Dynamic unmanned aircraft system traffic volume reservation based on multi-scale a* algorithm,” in AIAA Scitech 2022 Forum, 2022, p. 2236.
  36. Y. Li et al., “Ltrgcn: Large-scale graph convolutional networks-based learning to rank for web search,” in ECML PKDD, 2023, pp. 635–651.
  37. H.-C. Dan et al., “Multiple distresses detection for asphalt pavement using improved you only look once algorithm based on convolutional neural network,” International Journal of Pavement Engineering, 2024.
  38. Y. Li, H. Xiong, L. Kong, J. Bian, S. Wang et al., “Gs2p: a generative pre-trained learning to rank model with over-parameterization for web-scale search,” Machine Learning, pp. 1–19, 2024.
  39. W. Bian, A. Jang, and F. Liu, “Improving quantitative mri using self-supervised deep learning with model reinforcement: Demonstration for rapid t1 mapping,” Magnetic Resonance in Medicine, 2024.
  40. H.-C. Dan, B. Lu, and M. Li, “Evaluation of asphalt pavement texture using multiview stereo reconstruction based on deep learning,” Construction and Building Materials, vol. 412, p. 134837, 2024.
  41. H. Xiong, J. Bian, Y. Li, X. Li, M. Du, S. Wang, D. Yin, and S. Helal, “When search engine services meet large language models: Visions and challenges,” IEEE Transactions on Services Computing, 2024.
  42. X. Fan and C. Tao, “Towards resilient and efficient LLMs: A comparative study of efficiency, performance, and adversarial robustness,” arXiv preprint arXiv:2408.04585, 2024.
  43. Z. Wang et al., “Cdc-yolofusion: Leveraging cross-scale dynamic convolution fusion for visible-infrared object detection,” IEEE Transactions on Intelligent Vehicles, pp. 1–14, 2024.
  44. Y. Chen et al., “Emotionqueen: A benchmark for evaluating empathy of large language models,” in Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics, 2024.
  45. H. Gao et al., “A novel texture extraction method for the sedimentary structures’ classification of petroleum imaging logging,” in CCPR.   Springer, 2016, pp. 161–172.
  46. Y. Chen et al., “Hotvcom: Generating buzzworthy comments for videos,” in Proceedings of the 62nd Annual Meeting of the ACL, 2024.
  47. X. Yang et al., “Retargeting destinations of passive props for enhancing haptic feedback in virtual reality,” in VRW, 2022, pp. 618–619.
  48. X. Shen et al., “Harnessing XGBoost for robust biomarker selection of obsessive-compulsive disorder (OCD) from adolescent brain cognitive development (ABCD) data,” in ICBBE 2024, vol. 13252.   SPIE, 2024.
  49. Y. Li et al., “S2phere: Semi-supervised pre-training for web search over heterogeneous learning to rank data,” in ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2023, pp. 4437–4448.
  50. N. Ouyang et al., “Anharmonic lattice dynamics of sns across phase transition: A study using high-dimensional neural network potential,” Applied Physics Letters, vol. 119, no. 6, 2021.
  51. X. Liu, Z. Yu, and L. Tan, “Deep learning for lung disease classification using transfer learning and a customized cnn architecture with attention,” arXiv preprint arXiv:2408.13180, 2024.
  52. Y. Chen et al., “Hallucination detection: Robustly discerning reliable answers in large language models,” in CIKM, 2023, pp. 245–255.
  53. Z. Li et al., “Incorporating economic indicators and market sentiment effect into us treasury bond yield prediction with machine learning,” Journal of Infrastructure, Policy and Development, p. 7671, 2024.
  54. W. Bian et al., “Diffusion modeling with domain-conditioned prior guidance for accelerated mri and qmri reconstruction,” IEEE Transactions on Medical Imaging, 2024.
  55. J. Xiang, J. Chen, and Y. Liu, “Hybrid multiscale search for dynamic planning of multi-agent drone traffic,” Journal of Guidance, Control, and Dynamics, vol. 46, no. 10, pp. 1963–1974, 2023.
  56. J. Xiang, J. Xie, and J. Chen, “Landing trajectory prediction for uas based on generative adversarial network,” in AIAA SCITECH 2023 Forum, 2023, p. 0127.
  57. W. Bian, Y. Chen, and X. Ye, “An optimal control framework for joint-channel parallel mri reconstruction without coil sensitivities,” Magnetic Resonance Imaging, 2022.
  58. J. M. Langerman, I. Endres, D. Rethage, and P. Li, “Three-dimensional building model generation based on classification of image elements,” WO Patent App. US2022/078,558, 2024.
  59. W. Bian et al., “Magnetic resonance parameter mapping using self-supervised deep learning with model reinforcement,” ArXiv, 2023.
  60. C. Yu et al., “Advanced user credit risk prediction model using lightgbm, xgboost and tabnet with smoteenn,” arXiv:2408.03497, 2024.
  61. Y. Chen et al., “Temporalmed: Advancing medical dialogues with time-aware responses in large language models,” in WSDM, 2024.
  62. Z. Ding et al., “Regional style and color transfer,” in CVIDL.   IEEE, 2024, pp. 593–597.
  63. H. Yu et al., “Enhancing healthcare through large language models: A study on medical question answering,” arXiv:2408.04138, 2024.
  64. Z. Ding et al., “Confidence trigger detection: Accelerating real-time tracking-by-detection systems,” in ICECAI, 2024, pp. 587–592.
  65. Q. Yang et al., “A comparative study on enhancing prediction in social network advertisement through data augmentation,” in MLISE.   IEEE, 2024, pp. 214–218.
  66. Y. Zhou et al., “Evaluating modern approaches in 3d scene reconstruction: Nerf vs gaussian-based methods,” in DOCS, 2024, pp. 926–931.
  67. H. Ni et al., “Harnessing earnings reports for stock predictions: A qlora-enhanced llm approach,” in DOCS, 2024, pp. 909–915.
  68. Y. Chen et al., “Mapo: Boosting large language model performance with model-adaptive prompt optimization,” in EMNLP, 2023.
  69. N. Ouyang, C. Wang, and Y. Chen, “Temperature-and pressure-dependent phonon transport properties of sns across phase transition from machine-learning interatomic potential,” International Journal of Heat and Mass Transfer, vol. 192, p. 122859, 2022.
  70. Z. Ke et al., “Enhancing transferability of deep reinforcement learning-based variable speed limit control using transfer learning,” IEEE Transactions on Intelligent Transportation Systems, 2020.
  71. Z. Ke, Q. Zou, J. Liu, and S. Qian, “Real-time system optimal traffic routing under uncertainties–can physics models boost reinforcement learning?” arXiv preprint arXiv:2407.07364, 2024.
  72. P. Li, Y. Lin, and E. Schultz-Fellenz, “Contextual hourglass network for semantic segmentation of high resolution aerial imagery,” in ICECAI.   IEEE, 2024, pp. 15–18.
  73. L. Gao et al., “Autonomous multi-robot servicing for spacecraft operation extension,” in IROS.   IEEE, 2023, pp. 10 729–10 735.
  74. L. Yu et al., “Stochastic analysis of touch-tone frequency recognition in two-way radio systems for dialed telephone number identification,” in ICAACE.   IEEE, 2024, pp. 1565–1572.
  75. H. Ni et al., “Time series modeling for heart rate prediction: From arima to transformers,” in EEI.   IEEE, 2024, pp. 584–589.
  76. L. Gao et al., “Decentralized adaptive aerospace transportation of unknown loads using a team of robots,” arXiv:2407.08084, 2024.
  77. Y. Zhang et al., “Manipulator control system based on machine vision,” in ATCI.   Springer, 2020, pp. 906–916.
  78. P. Li, Q. Yang, X. Geng, W. Zhou, Z. Ding, and Y. Nian, “Exploring diverse methods in visual question answering,” in ICECAI.   IEEE, 2024, pp. 681–685.
  79. Z. Ding, P. Li, Q. Yang, and S. Li, “Enhance image-to-image generation with llava-generated prompts,” in ISPDS.   IEEE, 2024, pp. 77–81.
  80. P. Li et al., “Deception detection from linguistic and physiological data streams using bimodal convolutional neural networks,” in ISPDS.   IEEE, 2024, pp. 263–267.
  81. L. Gao et al., “Adaptive robot detumbling of a non-rigid satellite,” arXiv preprint arXiv:2407.17617, 2024.
  82. Y. Song et al., “Looking from a different angle: Placing head-worn displays near the nose,” in Proceedings of the Augmented Humans International Conference 2024, 2024, pp. 28–45.
  83. L. Tan et al., “Enhanced self-checkout system for retail based on improved yolov10,” arXiv preprint arXiv:2407.21308, 2024.
  84. Z. Li et al., “A contrastive deep learning approach to cryptocurrency portfolio with us treasuries,” Journal of Computer Technology and Applied Mathematics, vol. 1, no. 3, pp. 1–10, 2024.
  85. J. Xiang and L. Guo, “Comfort improvement for autonomous vehicles using reinforcement learning with in-situ human feedback,” SAE Technical Paper, Tech. Rep., 2022.
  86. L. Mao et al., “Personalized predictions for unplanned urinary tract infection hospitalizations with hierarchical clustering,” in AI and Analytics for Public Health: Proceedings of the 2020 INFORMS International Conference on Service Science, 2022, pp. 453–465.
  87. W. Bian, P. Li, M. Zheng, C. Wang, A. Li, Y. Li, H. Ni, and Z. Zeng, “A review of electromagnetic elimination methods for low-field portable mri scanner,” arXiv preprint arXiv:2406.17804, 2024.
  88. H. Xu, Y. Shao, K. Benaissa, and Y. Li, “Sparsebf: Enhancing scalability and efficiency for sparsely filled privacy-preserving record linkage,” in Proceedings of the 33rd ACM International Conference on Information and Knowledge Management, 2024, p. 4143–4147.
  89. Y. Chen et al., “Grow-and-clip: Informative-yet-concise evidence distillation for answer explanation,” in ICDE.   IEEE, 2022, pp. 741–754.
  90. S. Zheng et al., “Coordinated variable speed limit control for consecutive bottlenecks on freeways using multiagent reinforcement learning,” Journal of advanced transportation, vol. 2023, no. 1, p. 4419907, 2023.
  91. W. Liu et al., “Enhancing document-level event argument extraction with contextual clues and role relevance,” arXiv:2310.05991, 2023.
  92. L. Mao et al., “Knowledge-informed machine learning for cancer diagnosis and prognosis: A review,” arXiv preprint arXiv:2401.06406, 2024.
  93. H. Xu, “Towards seamless user query to rest api conversion,” in Proceedings of the 33rd ACM International Conference on Information and Knowledge Management, 2024, p. 5495–5498.
  94. L. Mao et al., “Weakly-supervised transfer learning with application in precision medicine,” IEEE Transactions on Automation Science and Engineering, 2023.
  95. Y. Chen, Y. Xiao, Z. Li, and B. Liu, “Xmqas: Constructing complex-modified question-answering dataset for robust question understanding,” IEEE Transactions on Knowledge and Data Engineering, 2023.
  96. H. Xu, X. Wang, and S. Ji, “Towards energy-efficient llama2 architecture on embedded fpgas,” in Proceedings of the 33rd ACM International Conference on Information and Knowledge Management, 2024, p. 5570–5571.
  97. Y. Chen et al., “Dr.academy: A benchmark for evaluating questioning capability in education for large language models,” in ACL, 2024.
  98. S. Li, H. Xu, and H. Chen, “Focused react: Improving react through reiterate and early stop,” arXiv preprint arXiv:2410.10779, 2024.
  99. T. Xie et al., “Darwin series: Domain specific large language models for natural science,” arXiv preprint arXiv:2308.13565, 2023.
  100. D. Liu et al., “Graphsnapshot: Graph machine learning acceleration with fast storage and retrieval,” arXiv preprint arXiv:2406.17918, 2024.
  101. T. Xie et al., “Large language models as master key: unlocking the s ecrets of materials science with gpt,” arXiv:2304.02213, 2023.
  102. H. Xu, X. Wang, and H. Chen, “Towards real-time and personalized code generation,” in Proceedings of the 33rd ACM International Conference on Information and Knowledge Management, 2024, p. 5568–5569.
  103. Z. Li et al., “Siakey: A method for improving few-shot learning with clinical domain information,” in BHI.   IEEE, 2023, pp. 1–4.
  104. Z. Ke and S. Qian, “Leveraging ride-hailing services for social good: Fleet optimal routing and system optimal pricing,” Transportation Research Part C: Emerging Technologies, vol. 155, p. 104284, 2023.
  105. Y. Chen et al., “Can pre-trained language models understand chinese humor?” in Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining, 2023, pp. 465–480.
  106. X. Fan et al., “Advanced stock price prediction with xlstm-based models: Improving long-term forecasting,” Preprints, 2024.
  107. Z. Ke et al., “Interpretable mixture of experts for time series prediction under recurrent and non-recurrent conditions,” arXiv preprints arXiv:2409.03282, 2024.
  108. C. Yu et al., “Credit card fraud detection using advanced transformer model,” arXiv preprint arXiv:2406.03733, 2024.
  109. S. Zheng, Z. Li, M. Li, and Z. Ke, “Enhancing reinforcement learning-based ramp metering performance at freeway uncertain bottlenecks using curriculum learning,” IET Intelligent Transport Systems, 2024.
  110. Y. Song et al., “Looking from a different angle: Placing head-worn displays near the nose,” in Augmented Humans, 2024, pp. 28–45.
  111. N. Ouyang, C. Wang, and Y. Chen, “Role of alloying in the phonon and thermal transport of sns–snse across the phase transition,” Materials Today Physics, vol. 28, p. 100890, 2022.
  112. Y. Chen et al., “Talk funny! a large-scale humor response dataset with chain-of-humor interpretation,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 38, no. 16, 2024, pp. 17 826–17 834.
  113. Z. Wang et al., “Graph neural network recommendation system for football formation,” Applied Science and Biotechnology Journal for Advanced Research, vol. 3, no. 3, pp. 33–39, 2024.
  114. D. Liu et al., “Llmeasyquant – an easy to use toolkit for llm quantization,” arXiv preprint arXiv:2406.19657, 2024.
  115. V. Ekambaram et al., “Tsmixer: Lightweight mlp-mixer model for multivariate time series forecasting,” in ACM SIGKDD, 2023.
  116. L. Wang et al., “Semi-supervised weighting for averaged one-dependence estimators,” Applied Intelligence, pp. 1–17, 2022.
  117. X. Liu et al., “Deep learning in medical image classification from mri-based brain tumor images,” arXiv preprint arXiv:2408.00636, 2024.
  118. Z. Zeng et al., “Rsa: Resolving scale ambiguities in monocular depth estimators through language descriptions,” arXiv preprint arXiv:2410.02924, 2024.
  119. D. Liu et al., “Distance recomputator and topology reconstructor for graph neural networks,” arXiv preprint arXiv:2406.17281, 2024.
  120. T. Zhou et al., “Fedformer: Frequency enhanced decomposed transformer for long-term series forecasting,” in ICML, 2022.
  121. Z. Zeng et al., “Wordepth: Variational language prior for monocular depth estimation,” in CVPR, 2024, pp. 9708–9719.
  122. T. Zhang et al., “Improving the efficiency of cmos image sensors through in-sensor selective attention,” in ISCAS, 2023, pp. 1–4.
  123. F. Yang et al., “Neurobind: Towards unified multimodal representations for neural signals,” arXiv preprint arXiv:2407.14020, 2024.
  124. R. Zhang et al., “Dspoint: Dual-scale point cloud recognition with high-frequency fusion,” arXiv preprint arXiv:2111.10332, 2021.
  125. S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Computation, vol. 9, no. 8, pp. 1735–1780, 1997.
  126. Y. Kang et al., “Tie memories to e-souvenirs: Hybrid tangible ar souvenirs in the museum,” in UIST, 2022, pp. 1–3.
  127. R. Zhang, Z. Zeng, Z. Guo, and Y. Li, “Can language understand depth?” in ACM Multimedia, 2022, pp. 6868–6874.
  128. Y. Nie et al., “A time series is worth 64 words: Long-term forecasting with transformers,” arXiv preprint arXiv:2211.14730, 2022.
  129. Y. Song et al., “Going blank comfortably: Positioning monocular head-worn displays when they are inactive,” in ISWC, 2023, pp. 114–118.
  130. H. Wu et al., “Timesnet: Temporal 2d-variation modeling for general time series analysis,” in ICLR, 2022.
  131. Y. Song, “Deep learning applications in the medical image recognition,” American Journal of Computer Science and Technology, 2019.
  132. P. Arora et al., “Comfortably going blank: Optimizing the position of optical combiners for monocular head-worn displays during inactivity,” in ACM ISWC, 2024, pp. 148–151.
  133. A. Vaswani et al., “Attention is all you need,” Advances in neural information processing systems, vol. 30, 2017.
  134. T. Zhang et al., “Transformer-based selective super-resolution for efficient image refinement,” in AAAI, 2024, pp. 7305–7313.
  135. Y. Yuan, Y. Huang et al., “Rhyme-aware chinese lyric generator based on gpt,” arXiv preprint arXiv:2408.10130, 2024.
  136. Y. LeCun et al., “Backpropagation applied to handwritten zip code recognition,” Neural computation, vol. 1, no. 4, pp. 541–551, 1989.
  137. J. Zhang et al., “Prototypical reward network for data-efficient rlhf,” arXiv preprint arXiv:2406.06606, 2024.
  138. Z. Zhang et al., “Complex scene image editing by scene graph comprehension,” arXiv preprint arXiv:2203.12849, 2022.
  139. S. Bai et al., “An empirical evaluation of generic convolutional and recurrent networks for sequence modeling,” arXiv:1803.01271, 2018.
  140. Z. Zhang, W. Qin, and B. A. Plummer, “Machine-generated text localization,” arXiv preprint arXiv:2402.11744, 2024.
  141. Y. Chen et al., “Xmecap: Meme caption generation with sub-image adaptability,” in Proceedings of the 32nd ACM Multimedia, 2024.
  142. Z. Zhang et al., “Movie genre classification by language augmentation and shot sampling,” in WACV, 2024, pp. 7275–7285.
  143. P. Chang et al., “A transformer-based diffusion probabilistic model for heart rate and blood pressure forecasting in intensive care unit,” Computer Methods and Programs in Biomedicine, vol. 246, 2024.
  144. Y. Kang et al., “6: Simultaneous tracking, tagging and mapping for augmented reality,” in SID Symposium Digest of Technical Papers, vol. 52.   Wiley Online Library, 2021, pp. 31–33.
  145. K. Mo et al., “Fine-tuning gemma-7b for enhanced sentiment analysis of financial news headlines,” in ICETCI, 2024, pp. 130–135.
  146. Y. Kang, Y. Song, and S. Huang, “Tie memories to e-souvenirs: Personalized souvenirs with augmented reality for interactive learning in the museum,” Preprints, 2024.
  147. Y. Chen et al., “Hadamard adapter: An extreme parameter-efficient adapter tuning method for pre-trained language models,” in CIKM, 2023, pp. 276–285.
  148. S. Bo et al., “Attention mechanism and context modeling system for text mining machine translation,” arXiv:2408.04216, 2024.
  149. W. Liu et al., “Beyond single-event extraction: Towards efficient document-level multi-event argument extraction,” arXiv preprint arXiv:2405.01884, 2024.
  150. D. Ma et al., “Transformer-based classification outcome prediction for multimodal stroke treatment,” arXiv preprint arXiv:2404.12634, 2024.
  151. T. Zhang et al., “Patch-based selection and refinement for early object detection,” in WACV, 2024, pp. 729–738.
  152. R. R. Selvaraju et al., “Grad-cam: visual explanations from deep networks via gradient-based localization,” International journal of computer vision, vol. 128, pp. 336–359, 2020.
  153. Z. Wang et al., “Research on autonomous driving decision-making strategies based deep reinforcement learning,” arXiv:2408.03084, 2024.
Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.