Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning $k$-body Hamiltonians via compressed sensing (2410.18928v2)

Published 24 Oct 2024 in quant-ph, cs.DS, and cs.LG

Abstract: We study the problem of learning a $k$-body Hamiltonian with $M$ unknown Pauli terms that are not necessarily geometrically local. We propose a protocol that learns the Hamiltonian to precision $\epsilon$ with total evolution time ${\mathcal{O}}(M{1/2+1/p}/\epsilon)$ up to logarithmic factors, where the error is quantified by the $\ellp$-distance between Pauli coefficients. Our learning protocol uses only single-qubit control operations and a GHZ state initial state, is non-adaptive, is robust against SPAM errors, and performs well even if $M$ and $k$ are not precisely known in advance or if the Hamiltonian is not exactly $M$-sparse. Methods from the classical theory of compressed sensing are used for efficiently identifying the $M$ terms in the Hamiltonian from among all possible $k$-body Pauli operators. We also provide a lower bound on the total evolution time needed in this learning task, and we discuss the operational interpretations of the $\ell1$ and $\ell2$ error metrics. In contrast to most previous works, our learning protocol requires neither geometric locality nor any other relaxed locality conditions.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (76)
  1. J. Haah, R. Kothari, and E. Tang, “Optimal learning of quantum Hamiltonians from high-temperature Gibbs states,” in 2022 IEEE 63rd Annual Symposium on Foundations of Computer Science (FOCS), pp. 135–146, IEEE, 2022.
  2. D. Stilck França, L. A. Markovich, V. V. Dobrovitski, A. H. Werner, and J. Borregaard, “Efficient and robust estimation of many-qubit Hamiltonians,” Nature Communications, vol. 15, p. 311, Jan 2024.
  3. W. Yu, J. Sun, Z. Han, and X. Yuan, “Robust and efficient Hamiltonian learning,” Quantum, vol. 7, p. 1045, 2023.
  4. A. Gu, L. Cincio, and P. J. Coles, “Practical Hamiltonian learning with unitary dynamics and Gibbs states,” Nature Communications, vol. 15, no. 1, p. 312, 2024.
  5. H.-Y. Huang, Y. Tong, D. Fang, and Y. Su, “Learning many-body Hamiltonians with Heisenberg-limited scaling,” Physical Review Letters, vol. 130, no. 20, p. 200403, 2023.
  6. M. C. Caro, “Learning quantum processes and Hamiltonians via the Pauli transfer matrix,” ACM Transactions on Quantum Computing, vol. 5, p. 1–53, June 2024.
  7. A. Anshu, S. Arunachalam, T. Kuwahara, and M. Soleimanifar, “Sample-efficient learning of interacting quantum systems,” Nature Physics, vol. 17, no. 8, pp. 931–935, 2021.
  8. A. Bakshi, A. Liu, A. Moitra, and E. Tang, “Learning quantum Hamiltonians at any temperature in polynomial time,” in Proceedings of the 56th Annual ACM Symposium on Theory of Computing, pp. 1470–1477, 2024.
  9. S. Foucart and H. Rauhut, A Mathematical Introduction to Compressive Sensing. Springer New York, 2013.
  10. E. J. Candès and M. B. Wakin, “An introduction to compressive sampling,” IEEE signal processing magazine, vol. 25, no. 2, pp. 21–30, 2008.
  11. S. S. Chen, D. L. Donoho, and M. A. Saunders, “Atomic decomposition by basis pursuit,” SIAM review, vol. 43, no. 1, pp. 129–159, 2001.
  12. E. J. Candes and T. Tao, “Near-optimal signal recovery from random projections: Universal encoding strategies?,” IEEE transactions on information theory, vol. 52, no. 12, pp. 5406–5425, 2006.
  13. M. Rudelson and R. Vershynin, “On sparse reconstruction from Fourier and Gaussian measurements,” Communications on Pure and Applied Mathematics: A Journal Issued by the Courant Institute of Mathematical Sciences, vol. 61, no. 8, pp. 1025–1045, 2008.
  14. E. J. Candes, J. K. Romberg, and T. Tao, “Stable signal recovery from incomplete and inaccurate measurements,” Communications on Pure and Applied Mathematics: A Journal Issued by the Courant Institute of Mathematical Sciences, vol. 59, no. 8, pp. 1207–1223, 2006.
  15. E. J. Candes and Y. Plan, “A probabilistic and ripless theory of compressed sensing,” IEEE transactions on information theory, vol. 57, no. 11, pp. 7235–7254, 2011.
  16. Y. C. Eldar and G. Kutyniok, Compressed sensing: theory and applications. Cambridge university press, 2012.
  17. A. Seif, M. Hafezi, and Y.-K. Liu, “Compressed sensing measurement of long-range correlated noise,” arXiv preprint arXiv:2105.12589, 2021.
  18. D. Gross, Y.-K. Liu, S. T. Flammia, S. Becker, and J. Eisert, “Quantum state tomography via compressed sensing,” Physical review letters, vol. 105, no. 15, p. 150401, 2010.
  19. A. Shabani, R. Kosut, M. Mohseni, H. Rabitz, M. Broome, M. Almeida, A. Fedrizzi, and A. White, “Efficient measurement of quantum dynamics via compressive sensing,” Physical review letters, vol. 106, no. 10, p. 100401, 2011.
  20. A. Shabani, M. Mohseni, S. Lloyd, R. L. Kosut, and H. Rabitz, “Estimation of many-body quantum Hamiltonians via compressive sensing,” Physical Review A, vol. 84, no. 1, p. 012107, 2011.
  21. S. T. Flammia, D. Gross, Y.-K. Liu, and J. Eisert, “Quantum tomography via compressed sensing: error bounds, sample complexity and efficient estimators,” New J. Phys., vol. 14, no. 9, p. 095022, 2012.
  22. I. Roth, R. Kueng, S. Kimmel, Y.-K. Liu, D. Gross, J. Eisert, and M. Kliesch, “Recovering quantum gates from few average gate fidelities,” Physical review letters, vol. 121, no. 17, p. 170502, 2018.
  23. R. Harper, W. Yu, and S. T. Flammia, “Fast estimation of sparse quantum noise,” PRX Quantum, vol. 2, no. 1, p. 010322, 2021.
  24. B. K. Natarajan, “Sparse approximate solutions to linear systems,” SIAM journal on computing, vol. 24, no. 2, pp. 227–234, 1995.
  25. T. J. Evans, R. Harper, and S. T. Flammia, “Scalable Bayesian Hamiltonian learning,” arXiv preprint arXiv:1912.07636, 2019.
  26. H.-Y. Huang, R. Kueng, and J. Preskill, “Predicting many properties of a quantum system from very few measurements,” Nat. Phys., vol. 16, p. 1050––1057, 2020.
  27. A. Elben, S. T. Flammia, H.-Y. Huang, R. Kueng, J. Preskill, B. Vermersch, and P. Zoller, “The randomized measurement toolbox,” Nature Reviews Physics, vol. 5, p. 9–24, Dec. 2022.
  28. Z. Li, L. Zou, and T. H. Hsieh, “Hamiltonian tomography via quantum quench,” Physical review letters, vol. 124, no. 16, p. 160502, 2020.
  29. L. Che, C. Wei, Y. Huang, D. Zhao, S. Xue, X. Nie, J. Li, D. Lu, and T. Xin, “Learning quantum Hamiltonians from single-qubit measurements,” Physical Review Research, vol. 3, no. 2, p. 023246, 2021.
  30. W. Yu, J. Sun, Z. Han, and X. Yuan, “Robust and efficient hamiltonian learning,” Quantum, vol. 7, p. 1045, June 2023.
  31. D. Hangleiter, I. Roth, J. Fuksa, J. Eisert, and P. Roushan, “Robustly learning the Hamiltonian dynamics of a superconducting quantum processor,” arXiv preprint arXiv:2108.08319, 2024.
  32. A. Zubida, E. Yitzhaki, N. H. Lindner, and E. Bairey, “Optimal short-time measurements for Hamiltonian learning,” arXiv preprint arXiv:2108.08824, 2021.
  33. E. Bairey, I. Arad, and N. H. Lindner, “Learning a local Hamiltonian from local measurements,” Physical review letters, vol. 122, no. 2, p. 020504, 2019.
  34. E. Bairey, C. Guo, D. Poletti, N. H. Lindner, and I. Arad, “Learning the dynamics of open quantum systems from their steady states,” New Journal of Physics, vol. 22, no. 3, p. 032001, 2020.
  35. C. E. Granade, C. Ferrie, N. Wiebe, and D. G. Cory, “Robust online Hamiltonian learning,” New Journal of Physics, vol. 14, no. 10, p. 103013, 2012.
  36. F. Wilde, A. Kshetrimayum, I. Roth, D. Hangleiter, R. Sweke, and J. Eisert, “Scalably learning quantum many-body Hamiltonians from dynamical data,” arXiv preprint arXiv:2209.14328, 2022.
  37. S. Krastanov, S. Zhou, S. T. Flammia, and L. Jiang, “Stochastic estimation of dynamical variables,” Quantum Science and Technology, vol. 4, no. 3, p. 035003, 2019.
  38. T. Möbus, A. Bluhm, M. C. Caro, A. H. Werner, and C. Rouzé, “Dissipation-enabled bosonic Hamiltonian learning via new information-propagation bounds,” arXiv preprint arXiv:2307.15026, 2023.
  39. M. Holzäpfel, T. Baumgratz, M. Cramer, and M. B. Plenio, “Scalable reconstruction of unitary processes and Hamiltonians,” Physical Review A, vol. 91, no. 4, p. 042129, 2015.
  40. A. Dutkiewicz, T. E. O’Brien, and T. Schuster, “The advantage of quantum control in many-body Hamiltonian learning,” arXiv preprint arXiv:2304.07172, 2023.
  41. A. Mirani and P. Hayden, “Learning interacting fermionic Hamiltonians at the Heisenberg limit,” arXiv preprint arXiv:2403.00069, 2024.
  42. H. Ni, H. Li, and L. Ying, “Quantum Hamiltonian learning for the Fermi-Hubbard model,” Acta Applicandae Mathematicae, vol. 191, no. 1, pp. 1–16, 2024.
  43. H. Li, Y. Tong, T. Gefen, H. Ni, and L. Ying, “Heisenberg-limited Hamiltonian learning for interacting bosons,” npj Quantum Information, vol. 10, no. 1, p. 83, 2024.
  44. S. Boixo and R. D. Somma, “Parameter estimation with mixed-state quantum computation,” Physical Review A—Atomic, Molecular, and Optical Physics, vol. 77, no. 5, p. 052320, 2008.
  45. A. Bakshi, A. Liu, A. Moitra, and E. Tang, “Structure learning of Hamiltonians from real-time evolution,” arXiv preprint arXiv:2405.00082, 2024.
  46. K. Wang and X. Li, “Simulation-assisted learning of open quantum systems,” Quantum, vol. 8, p. 1407, 2024.
  47. B. L. Higgins, D. W. Berry, S. D. Bartlett, H. M. Wiseman, and G. J. Pryde, “Entanglement-free Heisenberg-limited phase estimation,” Nature, vol. 450, no. 7168, pp. 393–396, 2007.
  48. S. Sachdev and J. Ye, “Gapless spin-fluid ground state in a random quantum Heisenberg magnet,” Physical review letters, vol. 70, no. 21, p. 3339, 1993.
  49. E. Campbell, “Random compiler for fast Hamiltonian simulation,” Physical review letters, vol. 123, no. 7, p. 070503, 2019.
  50. D. W. Berry, A. M. Childs, Y. Su, X. Wang, and N. Wiebe, “Time-dependent Hamiltonian simulation with L1superscript𝐿1L^{1}italic_L start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT-norm scaling,” Quantum, vol. 4, p. 254, 2020.
  51. C.-F. Chen, H.-Y. Huang, R. Kueng, and J. A. Tropp, “Concentration for random product formulas,” PRX Quantum, vol. 2, no. 4, p. 040305, 2021.
  52. L. Viola and S. Lloyd, “Dynamical suppression of decoherence in two-state quantum systems,” Physical Review A, vol. 58, no. 4, p. 2733, 1998.
  53. L. Viola, E. Knill, and S. Lloyd, “Dynamical decoupling of open quantum systems,” Physical Review Letters, vol. 82, no. 12, p. 2417, 1999.
  54. S. Kimmel, G. H. Low, and T. J. Yoder, “Robust calibration of a universal single-qubit gate set via robust phase estimation,” Physical Review A, vol. 92, no. 6, p. 062315, 2015.
  55. R. Scheibler, S. Haghighatshoar, and M. Vetterli, “A fast Hadamard transform for signals with sublinear sparsity in the transform domain,” IEEE Transactions on Information Theory, vol. 61, p. 2115–2132, Apr. 2015.
  56. X. Li, J. K. Bradley, S. Pawar, and K. Ramchandran, “SPRIGHT: A fast and robust framework for sparse Walsh-Hadamard transform,” arXiv preprint arXiv:1508.06336, 2015.
  57. H. J. Briegel and R. Raussendorf, “Persistent entanglement in arrays of interacting particles,” Phys. Rev. Lett., vol. 86, no. 5, p. 910, 2001.
  58. T.-C. Lu, L. A. Lessa, I. H. Kim, and T. H. Hsieh, “Measurement as a shortcut to long-range entangled quantum matter,” PRX Quantum, vol. 3, no. 4, p. 040337, 2022.
  59. Y. Ye and E. Tse, “An extension of Karmarkar’s projective algorithm for convex quadratic programming,” Mathematical programming, vol. 44, pp. 157–179, 1989.
  60. H.-Y. Huang, S. T. Flammia, and J. Preskill, “Foundations for learning from noisy quantum experiments,” arXiv preprint arXiv:2204.13691, 2022.
  61. B. Yu, “Assouad, Fano, and Le Cam,” in Festschrift for Lucien Le Cam, pp. 423–435, Springer, 1997.
  62. E. Knill, D. Leibfried, R. Reichle, J. Britton, R. B. Blakestad, J. D. Jost, C. Langer, R. Ozeri, S. Seidelin, and D. J. Wineland, “Randomized benchmarking of quantum gates,” Physical Review A, vol. 77, no. 1, p. 012307, 2008.
  63. E. Magesan, J. M. Gambetta, and J. Emerson, “Scalable and robust randomized benchmarking of quantum processes,” Physical review letters, vol. 106, no. 18, p. 180504, 2011.
  64. A. Erhard, J. J. Wallman, L. Postler, M. Meth, R. Stricker, E. A. Martinez, P. Schindler, T. Monz, J. Emerson, and R. Blatt, “Characterizing large-scale quantum computers via cycle benchmarking,” Nature communications, vol. 10, no. 1, pp. 1–7, 2019.
  65. R. Harper, S. T. Flammia, and J. J. Wallman, “Efficient learning of quantum noise,” Nature Physics, vol. 16, no. 12, pp. 1184–1188, 2020.
  66. S. Chen, J. Cotler, H.-Y. Huang, and J. Li, “Exponential separations between learning with and without quantum memory,” in 2021 IEEE 62nd Annual Symposium on Foundations of Computer Science (FOCS), pp. 574–585, IEEE, 2022.
  67. H.-Y. Huang, M. Broughton, J. Cotler, S. Chen, J. Li, M. Mohseni, H. Neven, R. Babbush, R. Kueng, J. Preskill, et al., “Quantum advantage in learning from experiments,” Science, vol. 376, no. 6598, pp. 1182–1186, 2022.
  68. Q. Zhao, Y. Zhou, A. F. Shaw, T. Li, and A. M. Childs, “Hamiltonian simulation with random inputs,” Physical Review Letters, vol. 129, no. 27, p. 270502, 2022.
  69. Y. Borns-Weil and D. Fang, “Uniform observable error bounds of trotter formulae for the semiclassical Schrödinger equation,” arXiv preprint arXiv:2208.07957, 2022.
  70. Y. Su, H.-Y. Huang, and E. T. Campbell, “Nearly tight Trotterization of interacting electrons,” Quantum, vol. 5, p. 495, 2021.
  71. D. An, D. Fang, and L. Lin, “Time-dependent unbounded Hamiltonian simulation with vector norm scaling,” Quantum, vol. 5, p. 459, 2021.
  72. D. Fang and A. T. Vilanova, “Observable error bounds of the time-splitting scheme for quantum-classical molecular dynamics,” SIAM Journal on Numerical Analysis, vol. 61, no. 1, pp. 26–44, 2023.
  73. Y. Tong, V. V. Albert, J. R. McClean, J. Preskill, and Y. Su, “Provably accurate simulation of gauge theories and bosonic systems,” Quantum, vol. 6, p. 816, 2022.
  74. Y. Cai, Y. Tong, and J. Preskill, “Stochastic Error Cancellation in Analog Quantum Simulation,” in 19th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2024) (F. Magniez and A. B. Grilo, eds.), vol. 310 of Leibniz International Proceedings in Informatics (LIPIcs), (Dagstuhl, Germany), pp. 2:1–2:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2024.
  75. A. Bluhm, M. C. Caro, and A. Oufkir, “Hamiltonian property testing,” arXiv preprint arXiv:2403.02968, 2024.
  76. Z. Bao and P. Yao, “On testing and learning quantum junta channels,” in The Thirty Sixth Annual Conference on Learning Theory, pp. 1064–1094, PMLR, 2023.
Citations (2)

Summary

  • The paper presents an efficient protocol that reconstructs k-body Hamiltonians via compressed sensing, achieving near-Heisenberg-limited performance.
  • It leverages single-qubit controls and GHZ state initialization to robustly mitigate SPAM errors without prior knowledge of the number of interaction terms.
  • Numerical results demonstrate that the method overcomes geometric locality constraints, promising advances in quantum simulation and error correction.

Overview of "Learning kk-body Hamiltonians via Compressed Sensing"

The paper "Learning kk-body Hamiltonians via Compressed Sensing" addresses the challenge of efficiently learning Hamiltonians with MM unknown kk-local Pauli terms, which are not necessarily geometrically local. The authors propose a protocol utilizing compressed sensing techniques to achieve precision ϵ\epsilon in learned Hamiltonian coefficients, quantified by the p\ell^p distance.

Key Contributions

The protocol provides a framework that relies on single-qubit control operations and GHZ state initializations, ensuring non-adaptiveness and robustness to SPAM errors. The method maintains performance even without prior precise knowledge of MM and kk. This approach diverges from conventional requirements of geometric locality by leveraging compressed sensing to effectively identify sparse Hamiltonian terms from a potentially vast basis of Pauli operators.

Numerical Results and Analysis

One of the critical results noted is the near-Heisenberg-limited scaling, O(1/ϵ)\mathcal{O}(1/\epsilon), in the total evolution time. The protocol shows that the total number of terms, MM, impacts evolution time as O(M1/2+1/p/ϵ)\mathcal{O}(M^{1/2+1/p}/\epsilon), which highlights efficiency in handling cases previously found challenging in quantum systems.

A specific numerical analysis reveals that for Γ\Gamma samples, with Γ\Gamma on the order of CMlog2(M)log(Mlog(D))log(D)CM\log^2(M)\log(M\log(D))\log(D), the compressed sensing techniques ensure a robust reconstruction of Hamiltonian coefficients. Moreover, the authors establish a theoretical lower bound for this learning task, presenting evidence that geometric locality constraints, often deemed necessary, can be bypassed under this framework.

Implications and Future Directions

Practically, the advancement allows for broader applications in quantum simulation and quantum error correction, where understanding Hamiltonian structures facilitates optimized control strategies. The advancement beyond prior methods equips quantum computing researchers with more potent tools for tackling non-local interaction models.

Theoretically, the framework opens prospects for exploring sparse signal reconstruction in broader quantum systems. Future developments could potentially focus on reducing the gap in total evolution time between lower and upper bounds or extending the protocols to bosonic and fermionic systems.

Moreover, the implications on the operational interpretation of error metrics provide insights into how learned Hamiltonians can predict observable properties in quantum systems, emphasizing worst-case and average-case scenarios.

Conclusion

This paper presents a significant step in Hamiltonian learning through compressed sensing, breaking away from traditional locality constraints. By handling kk-body interactions non-locally, the authors shift the benchmark for quantum systems' model learning, providing clarity and novel methodologies for both theoretical explorations and practical applications in quantum information science.