Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
118 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
34 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

Extremal Eigenvalues of Random Kernel Matrices with Polynomial Scaling (2410.17515v1)

Published 23 Oct 2024 in math.PR, math.ST, and stat.TH

Abstract: We study the spectral norm of random kernel matrices with polynomial scaling, where the number of samples scales polynomially with the data dimension. In this regime, Lu and Yau (2022) proved that the empirical spectral distribution converges to the additive free convolution of a semicircle law and a Marcenko-Pastur law. We demonstrate that the random kernel matrix can be decomposed into a "bulk" part and a low-rank part. The spectral norm of the "bulk" part almost surely converges to the edge of the limiting spectrum. In the special case where the random kernel matrices correspond to the inner products of random tensors, the empirical spectral distribution converges to the Marcenko-Pastur law. We prove that the largest and smallest eigenvalues converge to the corresponding spectral edges of the Marcenko-Pastur law.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.