Search for high-mass resonances in a final state comprising a gluon and two hadronically decaying W bosons in proton-proton collisions at $\sqrt{s}$ = 13 TeV (2410.17303v2)
Abstract: A search for high-mass resonances decaying into a gluon, g, and two W bosons is presented. A Kaluza--Klein gluon, g$\mathrm{KK}$, decaying in cascade via a scalar radion R, g$\mathrm{KK}$ $\to$ gR $\to$ gWW, is considered. The final state studied consists of three large-radius jets, two of which contain the products of hadronically decaying W bosons, and the third one the hadronization products of the gluon. The analysis is performed using proton-proton collision data at $\sqrt{s}$ = 13 TeV collected by the CMS experiment at the CERN LHC during 2016-2018, corresponding to an integrated luminosity of 138 fb${-1}$. The masses of the g$\mathrm{KK}$ and R candidates are reconstructed as trijet and dijet masses, respectively. These are used for event categorization and signal extraction. No excess of data events above the standard model background expectation is observed. Upper limits are set on the product of the g$\mathrm{KK}$ production cross section and its branching fraction via a radion R to gWW. This is the first analysis examining the resonant WW+jet signature and setting limits on the two resonance masses in an extended warped extra-dimensional model.
- CMS Collaboration, “Search for heavy resonances decaying to Z(νν¯𝜈¯𝜈\nu\bar{\nu}italic_ν over¯ start_ARG italic_ν end_ARG)V(qq¯¯q\bar{\text{q}}over¯ start_ARG q end_ARG’) in proton-proton collisions at s𝑠\sqrt{s}square-root start_ARG italic_s end_ARG = 13 TeV”, Phys. Rev. D 106 (2022) 012004, 10.1103/PhysRevD.106.012004, arXiv:2109.08268.
- CMS Collaboration, “Search for new heavy resonances decaying to WW, WZ, ZZ, WH, or ZH boson pairs in the all-jets final state in proton-proton collisions at s=𝑠absent\sqrt{s}=square-root start_ARG italic_s end_ARG = 13 TeV”, Phys. Lett. B 844 (2023) 137813, 10.1016/j.physletb.2023.137813, arXiv:2210.00043.
- CMS Collaboration, “Search for heavy resonances decaying to WW, WZ, or WH boson pairs in the lepton plus merged jet final state in proton-proton collisions at s𝑠\sqrt{s}square-root start_ARG italic_s end_ARG = 13 TeV”, Phys. Rev. D 105 (2022) 032008, 10.1103/PhysRevD.105.032008, arXiv:2109.06055.
- CMS Collaboration, “Search for high mass dijet resonances with a new background prediction method in proton-proton collisions at s=𝑠absent\sqrt{s}=square-root start_ARG italic_s end_ARG = 13 TeV”, JHEP 05 (2020) 033, 10.1007/JHEP05(2020)033, arXiv:1911.03947.
- CMS Collaboration, “Search for a heavy resonance decaying into ZH in events with an energetic jet and two electrons, two muons, or missing transverse momentum in proton-proton collisions at s𝑠\sqrt{s}square-root start_ARG italic_s end_ARG = 13 TeV”, CMS Physics Analysis Summary CMS-PAS-B2G-23-008, 2023. To be submitted.
- CMS Collaboration, “Search for heavy resonances decaying to ZZ or ZW and axion-like particles mediating nonresonant ZZ or ZH production at s𝑠\sqrt{s}square-root start_ARG italic_s end_ARG = 13 TeV”, JHEP 04 (2022) 087, 10.1007/JHEP04(2022)087, arXiv:2111.13669.
- CMS Collaboration, “Search for a heavy vector resonance decaying to a ZsuperscriptsubscriptZabsentabsent{\mathrm{Z}}_{\mathrm{}}^{\mathrm{}}roman_Z start_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT end_POSTSUPERSCRIPT boson and a Higgs boson in proton-proton collisions at s=13TeV𝑠13TeV\sqrt{s}=13\,\text{TeV}square-root start_ARG italic_s end_ARG = 13 TeV”, Eur. Phys. J. C 81 (2021) 688, 10.1140/epjc/s10052-021-09348-6, arXiv:2102.08198.
- CMS Collaboration, “Searches for Higgs boson production through decays of heavy resonances”, 2024. arXiv:2403.16926.
- ATLAS Collaboration, “Search for resonances decaying into a weak vector boson and a Higgs boson in the fully hadronic final state produced in proton−--proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV with the ATLAS detector”, Phys. Rev. D 102 (2020) 112008, 10.1103/PhysRevD.102.112008, arXiv:2007.05293.
- ATLAS Collaboration, “Search for heavy diboson resonances in semileptonic final states in pp collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV with the ATLAS detector”, Eur. Phys. J. C 80 (2020) 1165, 10.1140/epjc/s10052-020-08554-y, arXiv:2004.14636.
- ATLAS Collaboration, “Search for diboson resonances in hadronic final states in 139 fb-1 of pp𝑝𝑝ppitalic_p italic_p collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV with the ATLAS detector”, JHEP 09 (2019) 091, 10.1007/JHEP09(2019)091, arXiv:1906.08589. [Erratum: JHEP 06 (2020) 042].
- ATLAS Collaboration, “Combination of searches for heavy spin-1 resonances using 139 fb-1 of proton-proton collision data at s𝑠\sqrt{s}square-root start_ARG italic_s end_ARG = 13 TeV with the ATLAS detector”, JHEP 04 (2024) 118, 10.1007/JHEP04(2024)118, arXiv:2402.10607.
- ATLAS Collaboration, “Search for resonant WZ production in the fully leptonic final state in proton–proton collisions at 𝐬=𝟏𝟑𝐬13\mathbf{\sqrt{s}=13}square-root start_ARG bold_s end_ARG = bold_13 TeV with the ATLAS detector”, Eur. Phys. J. C 83 (2023) 633, 10.1140/epjc/s10052-023-11437-7, arXiv:2207.03925.
- ATLAS Collaboration, “Search for heavy resonances decaying into a Z𝑍Zitalic_Z or W𝑊Witalic_W boson and a Higgs boson in final states with leptons and b𝑏bitalic_b-jets in 139139139~{}139fb-1 of pp𝑝𝑝ppitalic_p italic_p collisions at s=13𝑠13\sqrt{s}=13~{}square-root start_ARG italic_s end_ARG = 13TeV with the ATLAS detector”, JHEP 06 (2023) 016, 10.1007/JHEP06(2023)016, arXiv:2207.00230.
- ATLAS Collaboration, “Search for new resonances in mass distributions of jet pairs using 139 fb-1 of pp𝑝𝑝ppitalic_p italic_p collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV with the ATLAS detector”, JHEP 03 (2020) 145, 10.1007/JHEP03(2020)145, arXiv:1910.08447.
- K. Agashe, P. Du, S. Hong, and R. Sundrum, “Flavor universal resonances and warped gravity”, JHEP 01 (2017) 016, 10.1007/JHEP01(2017)016, arXiv:1608.00526.
- K. S. Agashe et al., “LHC signals from cascade decays of warped vector resonances”, JHEP 05 (2017) 078, 10.1007/JHEP05(2017)078, arXiv:1612.00047.
- K. Agashe et al., “Dedicated strategies for triboson signals from cascade decays of vector resonances”, Phys. Rev. D 99 (2019) 075016, 10.1103/PhysRevD.99.075016, arXiv:1711.09920.
- K. Agashe et al., “Detecting a boosted diboson resonance”, JHEP 11 (2018) 027, 10.1007/JHEP11(2018)027, arXiv:1809.07334.
- Y.-P. Kuang, H.-Y. Ren, and L.-H. Xia, “Further investigation of the model-independent probe of heavy neutral Higgs bosons at LHC Run 2”, Chin. Phys. C 40 (2016) 023101, 10.1088/1674-1137/40/2/023101, arXiv:1506.08007.
- Y.-P. Kuang, H.-Y. Ren, and L.-H. Xia, “Model-independent probe of anomalous heavy neutral Higgs bosons at the LHC”, Phys. Rev. D 90 (2014) 115002, 10.1103/PhysRevD.90.115002, arXiv:1404.6367.
- W. D. Goldberger and M. B. Wise, “Modulus stabilization with bulk fields”, Phys. Rev. Lett. 83 (1999) 4922, 10.1103/PhysRevLett.83.4922, arXiv:hep-ph/9907447.
- S. Weinberg, “Implications of dynamical symmetry breaking”, Phys. Rev. D 13 (1976) 974, 10.1103/PhysRevD.13.974. [Addendum: \DOI10.1103/PhysRevD.19.1277].
- L. Susskind, “Dynamics of spontaneous symmetry breaking in the Weinberg-Salam theory”, Phys. Rev. D 20 (1979) 2619, 10.1103/PhysRevD.20.2619.
- CMS Collaboration, “Search for resonances decaying to three W bosons in proton-proton collisions at s𝑠\sqrt{s}square-root start_ARG italic_s end_ARG = 13 TeV”, Phys. Rev. Lett. 129 (2022) 021802, 10.1103/PhysRevLett.129.021802, arXiv:2201.08476.
- CMS Collaboration, “Search for resonances decaying to three W𝑊Witalic_W bosons in the hadronic final state in proton-proton collisions at s𝑠\sqrt{s}square-root start_ARG italic_s end_ARG =13 TeV”, Phys. Rev. D 106 (2022) 012002, 10.1103/PhysRevD.106.012002, arXiv:2112.13090.
- CMS Collaboration, “Search for high-mass resonances decaying to a jet and a Lorentz-boosted resonance in proton-proton collisions at s𝑠\sqrt{s}square-root start_ARG italic_s end_ARG = 13 TeV”, Phys. Lett. B 832 (2022) 137263, 10.1016/j.physletb.2022.137263, arXiv:2201.02140.
- CMS Collaboration, “Search for Narrow Trijet Resonances in Proton-Proton Collisions at s𝑠\sqrt{s}square-root start_ARG italic_s end_ARG = 13 TeV”, Phys. Rev. Lett. 133 (2024) 011801, 10.1103/PhysRevLett.133.011801, arXiv:2310.14023.
- ATLAS Collaboration, “Search for new phenomena in multi-body invariant masses in events with at least one isolated lepton and two jets using s𝑠\sqrt{s}square-root start_ARG italic_s end_ARG = 13 TeV proton–proton collision data collected by the ATLAS detector”, JHEP 07 (2023) 202, 10.1007/JHEP07(2023)202, arXiv:2211.08945.
- CMS Collaboration, “Precision luminosity measurement in proton-proton collisions at s=𝑠absent\sqrt{s}=square-root start_ARG italic_s end_ARG = 13 TeV in 2015 and 2016 at CMS”, Eur. Phys. J. C 81 (2021) 800, 10.1140/epjc/s10052-021-09538-2, arXiv:2104.01927.
- CMS Collaboration, “CMS luminosity measurement for the 2017 data-taking period at s𝑠\sqrt{s}square-root start_ARG italic_s end_ARG = 13 TeV”, CMS Physics Analysis Summary CMS-PAS-LUM-17-004, 2018.
- CMS Collaboration, “CMS luminosity measurement for the 2018 data-taking period at s𝑠\sqrt{s}square-root start_ARG italic_s end_ARG = 13 TeV”, CMS Physics Analysis Summary CMS-PAS-LUM-18-002, 2019.
- CMS Collaboration, “Identification of heavy, energetic, hadronically decaying particles using machine-learning techniques”, JINST 15 (2020) P06005, 10.1088/1748-0221/15/06/p06005, arXiv:2004.08262.
- H. Qu and L. Gouskos, “Jet tagging via particle clouds”, Phys. Rev. D 101 (2020) 056019, 10.1103/PhysRevD.101.056019, arXiv:1902.08570.
- “HEPData record for this analysis”, 2024. 10.17182/hepdata.153718.
- CMS Collaboration, “Performance of the CMS Level-1 trigger in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV”, JINST 15 (2020) P10017, 10.1088/1748-0221/15/10/P10017, arXiv:2006.10165.
- CMS Collaboration, “The CMS trigger system”, JINST 12 (2017) P01020, 10.1088/1748-0221/12/01/P01020, arXiv:1609.02366.
- CMS Collaboration, “The CMS experiment at the CERN LHC”, JINST 3 (2008) S08004, 10.1088/1748-0221/3/08/S08004.
- CMS Collaboration, “Development of the CMS detector for the CERN LHC Run 3”, JINST 19 (2024), no. 05, P05064, 10.1088/1748-0221/19/05/P05064, arXiv:2309.05466.
- J. Alwall et al., “The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations”, JHEP 07 (2014) 079, 10.1007/JHEP07(2014)079, arXiv:1405.0301.
- J. Alwall et al., “Comparative study of various algorithms for the merging of parton showers and matrix elements in hadronic collisions”, Eur. Phys. J. C 53 (2008) 473, 10.1140/epjc/s10052-007-0490-5, arXiv:0706.2569.
- P. Nason, “A new method for combining NLO QCD with shower Monte Carlo algorithms”, JHEP 11 (2004) 040, 10.1088/1126-6708/2004/11/040, arXiv:hep-ph/0409146.
- S. Frixione, P. Nason, and C. Oleari, “Matching NLO QCD computations with parton shower simulations: the POWHEG method”, JHEP 11 (2007) 070, 10.1088/1126-6708/2007/11/070, arXiv:0709.2092.
- S. Alioli, P. Nason, C. Oleari, and E. Re, “A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX”, JHEP 06 (2010) 043, 10.1007/JHEP06(2010)043, arXiv:1002.2581.
- S. Alioli, S.-O. Moch, and P. Uwer, “Hadronic top-quark pair-production with one jet and parton showering”, JHEP 01 (2012) 137, 10.1007/JHEP01(2012)137, arXiv:1110.5251.
- S. Alioli, P. Nason, C. Oleari, and E. Re, “NLO single-top production matched with shower in POWHEG: s𝑠sitalic_s- and t𝑡titalic_t-channel contributions”, JHEP 09 (2009) 111, 10.1088/1126-6708/2009/09/111, arXiv:0907.4076. [Erratum: \DOI10.1007/JHEP02(2010)011].
- R. Frederix, E. Re, and P. Torrielli, “Single-top t𝑡titalic_t-channel hadroproduction in the four-flavour scheme with POWHEG and aMC@NLO”, JHEP 09 (2012) 130, 10.1007/JHEP09(2012)130, arXiv:1207.5391.
- NNPDF Collaboration, “Parton distributions for the LHC run II”, JHEP 04 (2015) 040, 10.1007/JHEP04(2015)040, arXiv:1410.8849.
- T. Sjöstrand et al., “An introduction to PYTHIA 8.2”, Comput. Phys. Commun. 191 (2015) 159, 10.1016/j.cpc.2015.01.024, arXiv:1410.3012.
- CMS Collaboration, “Extraction and validation of a new set of CMS PYTHIA8 tunes from underlying-event measurements”, Eur. Phys. J. C 80 (2020) 4, 10.1140/epjc/s10052-019-7499-4, arXiv:1903.12179.
- GEANT4 Collaboration, “\GEANTfour—a simulation toolkit”, Nucl. Instrum. Meth. A 506 (2003) 250, 10.1016/S0168-9002(03)01368-8.
- CMS Collaboration, “Technical proposal for the Phase-II upgrade of the Compact Muon Solenoid”, CMS Technical Proposal CERN-LHCC-2015-010, CMS-TDR-15-02, 2015.
- CMS Collaboration, “Particle-flow reconstruction and global event description with the CMS detector”, JINST 12 (2017) P10003, 10.1088/1748-0221/12/10/P10003, arXiv:1706.04965.
- M. Cacciari, G. P. Salam, and G. Soyez, “The anti-\ktjet clustering algorithm”, JHEP 04 (2008) 063, 10.1088/1126-6708/2008/04/063, arXiv:0802.1189.
- M. Cacciari, G. P. Salam, and G. Soyez, “FastJet user manual”, Eur. Phys. J. C 72 (2012) 1896, 10.1140/epjc/s10052-012-1896-2, arXiv:1111.6097.
- CMS Collaboration, “Jet energy scale and resolution in the CMS experiment in pp collisions at 8 TeV”, JINST 12 (2017) P02014, 10.1088/1748-0221/12/02/P02014, arXiv:1607.03663.
- CMS Collaboration, “Pileup mitigation at CMS in 13 TeV data”, JINST 15 (2020) P09018, 10.1088/1748-0221/15/09/p09018, arXiv:2003.00503.
- D. Bertolini, P. Harris, M. Low, and N. Tran, “Pileup Per Particle Identification”, JHEP 10 (2014) 059, 10.1007/JHEP10(2014)059, arXiv:1407.6013.
- CMS Collaboration, “Jet algorithms performance in 13 TeV data”, CMS Physics Analysis Summary CMS-PAS-JME-16-003, 2017.
- E. Bols et al., “Jet flavour classification using DeepJet”, JINST 15 (2020) P12012, 10.1088/1748-0221/15/12/P12012, arXiv:2008.10519.
- CMS Collaboration, “Performance of the DeepJet b tagging algorithm using 41.9 fb-1 of data from proton-proton collisions at 13 TeV with Phase-1 CMS detector”, CMS Detector Performance Note CMS-DP-2018-058, 2018.
- CMS Collaboration, “Performance of missing transverse momentum reconstruction in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV using the CMS detector”, JINST 14 (2019) P07004, 10.1088/1748-0221/14/07/P07004, arXiv:1903.06078.
- G. Louppe, M. Kagan, and K. Cranmer, “Learning to pivot with adversarial networks”, 2016. arXiv:1611.01046.
- M. Dasgupta, A. Fregoso, S. Marzani, and G. P. Salam, “Towards an understanding of jet substructure”, JHEP 09 (2013) 029, 10.1007/JHEP09(2013)029, arXiv:1307.0007.
- J. M. Butterworth, A. R. Davison, M. Rubin, and G. P. Salam, “Jet substructure as a new Higgs search channel at the LHC”, Phys. Rev. Lett. 100 (2008) 242001, 10.1103/PhysRevLett.100.242001, arXiv:0802.2470.
- A. J. Larkoski, S. Marzani, G. Soyez, and J. Thaler, “Soft drop”, JHEP 05 (2014) 146, 10.1007/JHEP05(2014)146, arXiv:1402.2657.
- CMS Collaboration, “Identification techniques for highly boosted W bosons that decay into hadrons”, JHEP 12 (2014) 017, 10.1007/JHEP12(2014)017, arXiv:1410.4227.
- CMS Collaboration, “Performance of the CMS muon detector and muon reconstruction with proton-proton collisions at s=13\TeV𝑠13\TeV{\sqrt{s}=13\TeV}square-root start_ARG italic_s end_ARG = 13”, JINST 13 (2018) P06015, 10.1088/1748-0221/13/06/P06015, arXiv:1804.04528.
- CMS Collaboration, “Performance of electron reconstruction and selection with the CMS detector in proton-proton collisions at s=8\TeV𝑠8\TeV\sqrt{s}=8\TeVsquare-root start_ARG italic_s end_ARG = 8”, JINST 10 (2015) P06005, 10.1088/1748-0221/10/06/P06005, arXiv:1502.02701.
- D. Krohn, J. Thaler, and L.-T. Wang, “Jet trimming”, JHEP 02 (2010) 084, 10.1007/JHEP02(2010)084, arXiv:0912.1342.
- CMS Collaboration, “Measurement of the inelastic proton-proton cross section at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV”, JHEP 07 (2018) 161, 10.1007/JHEP07(2018)161, arXiv:1802.02613.
- CMS Collaboration, “The CMS statistical analysis and combination tool: COMBINE”, 2024. arXiv:2404.06614. Accepted for publication by Computing and Software for Big Science.
- G. Cowan, K. Cranmer, E. Gross, and O. Vitells, “Asymptotic formulae for likelihood-based tests of new physics”, Eur. Phys. J. C 71 (2011) 1554, 10.1140/epjc/s10052-011-1554-0, arXiv:1007.1727. [Erratum: \DOI10.1140/epjc/s10052-013-2501-z].