Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quantum spaces associated to mixed polarizations and their limiting behavior on toric varieties (2410.17130v1)

Published 22 Oct 2024 in math.SG, math-ph, math.DG, and math.MP

Abstract: Let $(X, \omega, J)$ be a toric variety of dimension $2n$ determined by a Delzant polytope $P$. As indicated in [40], $X$ admits a natural mixed polarization $\mathcal{P}{k}$, induced by the action of a subtorus $T{k}$. In this paper, we first establish the quantum space $\mathcal{H}{k}$ for $\mathcal{P}{k}$, identifying a basis parameterized by the integer lattice points of $P$. This confirms that the dimension of $\mathcal{H}{k}$ aligns with those derived from K\"ahler and real polarizations. Secondly, we examine a one-parameter family of K\"ahler polarizations $\mathcal{P}{k,t}$, defined via symplectic potentials, and demonstrate their convergence to $\mathcal{P}{k}$. Thirdly, we verify that these polarizations $\mathcal{P}{k,t}$ coincide with those induced by imaginary-time flow. Finally, we explore the relationship between the quantum space $\mathcal{H}{k,0}$ and $\mathcal{H}{k}$, establishing that ``$\lim{t \rightarrow \infty} \mathcal{H}{k,t} = \mathcal{H}{k}$."

Summary

We haven't generated a summary for this paper yet.