Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A class of modular and flexible covariate-based covariance functions for nonstationary spatial modeling (2410.16716v1)

Published 22 Oct 2024 in stat.ME, stat.AP, and stat.ML

Abstract: The assumptions of stationarity and isotropy often stated over spatial processes have not aged well during the last two decades, partly explained by the combination of computational developments and the increasing availability of high-resolution spatial data. While a plethora of approaches have been developed to relax these assumptions, it is often a costly tradeoff between flexibility and a diversity of computational challenges. In this paper, we present a class of covariance functions that relies on fixed, observable spatial information that provides a convenient tradeoff while offering an extra layer of numerical and visual representation of the flexible spatial dependencies. This model allows for separate parametric structures for different sources of nonstationarity, such as marginal standard deviation, geometric anisotropy, and smoothness. It simplifies to a Mat\'ern covariance function in its basic form and is adaptable for large datasets, enhancing flexibility and computational efficiency. We analyze the capabilities of the presented model through simulation studies and an application to Swiss precipitation data.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com