Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
89 tokens/sec
Gemini 2.5 Pro Premium
41 tokens/sec
GPT-5 Medium
23 tokens/sec
GPT-5 High Premium
19 tokens/sec
GPT-4o
96 tokens/sec
DeepSeek R1 via Azure Premium
88 tokens/sec
GPT OSS 120B via Groq Premium
467 tokens/sec
Kimi K2 via Groq Premium
197 tokens/sec
2000 character limit reached

Improved Explicit Near-Optimal Codes in the High-Noise Regimes (2410.15506v2)

Published 20 Oct 2024 in cs.IT, cs.DS, math.CO, and math.IT

Abstract: We study uniquely decodable codes and list decodable codes in the high-noise regime, specifically codes that are uniquely decodable from $\frac{1-\varepsilon}{2}$ fraction of errors and list decodable from $1-\varepsilon$ fraction of errors. We present several improved explicit constructions that achieve near-optimal rates, as well as efficient or even linear-time decoding algorithms. Our contributions are as follows. 1. Explicit Near-Optimal Linear Time Uniquely Decodable Codes: We construct a family of explicit $\mathbb{F}_2$-linear codes with rate $\Omega(\varepsilon)$ and alphabet size $2{\mathrm{poly} \log(1/\varepsilon)}$, that are capable of correcting $e$ errors and $s$ erasures whenever $2e + s < (1 - \varepsilon)n$ in linear-time. 2. Explicit Near-Optimal List Decodable Codes: We construct a family of explicit list decodable codes with rate $\Omega(\varepsilon)$ and alphabet size $2{\mathrm{poly} \log(1/\varepsilon)}$, that are capable of list decoding from $1-\varepsilon$ fraction of errors with a list size $L = \exp\exp\exp(\log{\ast}n)$ in polynomial time. 3. List Decodable Code with Near-Optimal List Size: We construct a family of explicit list decodable codes with an optimal list size of $O(1/\varepsilon)$, albeit with a suboptimal rate of $O(\varepsilon2)$, capable of list decoding from $1-\varepsilon$ fraction of errors in polynomial time. Furthermore, we introduce a new combinatorial object called multi-set disperser, and use it to give a family of list decodable codes with near-optimal rate $\frac{\varepsilon}{\log2(1/\varepsilon)}$ and list size $\frac{\log2(1/\varepsilon)}{\varepsilon}$, that can be constructed in probabilistic polynomial time and decoded in deterministic polynomial time. We also introduce new decoding algorithms that may prove valuable for other graph-based codes.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)