Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
136 tokens/sec
GPT-4o
11 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

DTPPO: Dual-Transformer Encoder-based Proximal Policy Optimization for Multi-UAV Navigation in Unseen Complex Environments (2410.15205v1)

Published 19 Oct 2024 in cs.MA

Abstract: Existing multi-agent deep reinforcement learning (MADRL) methods for multi-UAV navigation face challenges in generalization, particularly when applied to unseen complex environments. To address these limitations, we propose a Dual-Transformer Encoder-based Proximal Policy Optimization (DTPPO) method. DTPPO enhances multi-UAV collaboration through a Spatial Transformer, which models inter-agent dynamics, and a Temporal Transformer, which captures temporal dependencies to improve generalization across diverse environments. This architecture allows UAVs to navigate new, unseen environments without retraining. Extensive simulations demonstrate that DTPPO outperforms current MADRL methods in terms of transferability, obstacle avoidance, and navigation efficiency across environments with varying obstacle densities. The results confirm DTPPO's effectiveness as a robust solution for multi-UAV navigation in both known and unseen scenarios.

Summary

We haven't generated a summary for this paper yet.