Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
51 tokens/sec
2000 character limit reached

Incorporating Group Prior into Variational Inference for Tail-User Behavior Modeling in CTR Prediction (2410.15098v1)

Published 19 Oct 2024 in cs.IR and cs.AI

Abstract: User behavior modeling -- which aims to extract user interests from behavioral data -- has shown great power in Click-through rate (CTR) prediction, a key component in recommendation systems. Recently, attention-based algorithms have become a promising direction, as attention mechanisms emphasize the relevant interactions from rich behaviors. However, the methods struggle to capture the preferences of tail users with sparse interaction histories. To address the problem, we propose a novel variational inference approach, namely Group Prior Sampler Variational Inference (GPSVI), which introduces group preferences as priors to refine latent user interests for tail users. In GPSVI, the extent of adjustments depends on the estimated uncertainty of individual preference modeling. In addition, We further enhance the expressive power of variational inference by a volume-preserving flow. An appealing property of the GPSVI method is its ability to revert to traditional attention for head users with rich behavioral data while consistently enhancing performance for long-tail users with sparse behaviors. Rigorous analysis and extensive experiments demonstrate that GPSVI consistently improves the performance of tail users. Moreover, online A/B testing on a large-scale real-world recommender system further confirms the effectiveness of our proposed approach.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.