Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
138 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
4 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

ImmerseDiffusion: A Generative Spatial Audio Latent Diffusion Model (2410.14945v2)

Published 19 Oct 2024 in cs.SD, cs.ET, cs.LG, and eess.AS

Abstract: We introduce ImmerseDiffusion, an end-to-end generative audio model that produces 3D immersive soundscapes conditioned on the spatial, temporal, and environmental conditions of sound objects. ImmerseDiffusion is trained to generate first-order ambisonics (FOA) audio, which is a conventional spatial audio format comprising four channels that can be rendered to multichannel spatial output. The proposed generative system is composed of a spatial audio codec that maps FOA audio to latent components, a latent diffusion model trained based on various user input types, namely, text prompts, spatial, temporal and environmental acoustic parameters, and optionally a spatial audio and text encoder trained in a Contrastive Language and Audio Pretraining (CLAP) style. We propose metrics to evaluate the quality and spatial adherence of the generated spatial audio. Finally, we assess the model performance in terms of generation quality and spatial conformance, comparing the two proposed modes: descriptive", which uses spatial text prompts) andparametric", which uses non-spatial text prompts and spatial parameters. Our evaluations demonstrate promising results that are consistent with the user conditions and reflect reliable spatial fidelity.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.