Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Collaboratively adding new knowledge to an LLM (2410.14753v2)

Published 18 Oct 2024 in cs.LG, cs.AI, and cs.CL

Abstract: We address the question of how to successively add new knowledge to an LLM whilst retaining previously-added knowledge. We consider two settings, semi-cooperative and fully-cooperative. Overall, LoRA performs better in most cases than full-fine tuning of all parameters when both new knowledge acquisition and retention of old, including recent, knowledge are taken into account. In the semi-cooperative setting, where datasets are not available after training, MOE mixing, model merging, and LoRA-based orthogonal subspace sequential learning, using a small weight on the orthogonality term, perform well. In the fully-cooperative setting where datasets remain available, joint training and sequential training with replay are both effective approaches with LoRA training generally preferable to full fine-tuning. The codes needed to reproduce the results are provided in an open source repository.

Summary

We haven't generated a summary for this paper yet.