Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
11 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
4 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

Interpretable end-to-end Neurosymbolic Reinforcement Learning agents (2410.14371v1)

Published 18 Oct 2024 in cs.AI

Abstract: Deep reinforcement learning (RL) agents rely on shortcut learning, preventing them from generalizing to slightly different environments. To address this problem, symbolic method, that use object-centric states, have been developed. However, comparing these methods to deep agents is not fair, as these last operate from raw pixel-based states. In this work, we instantiate the symbolic SCoBots framework. SCoBots decompose RL tasks into intermediate, interpretable representations, culminating in action decisions based on a comprehensible set of object-centric relational concepts. This architecture aids in demystifying agent decisions. By explicitly learning to extract object-centric representations from raw states, object-centric RL, and policy distillation via rule extraction, this work places itself within the neurosymbolic AI paradigm, blending the strengths of neural networks with symbolic AI. We present the first implementation of an end-to-end trained SCoBot, separately evaluate of its components, on different Atari games. The results demonstrate the framework's potential to create interpretable and performing RL systems, and pave the way for future research directions in obtaining end-to-end interpretable RL agents.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com