Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

How Does Knowledge Selection Help Retrieval Augmented Generation? (2410.13258v3)

Published 17 Oct 2024 in cs.CL

Abstract: Retrieval-augmented generation (RAG) is a powerful method for enhancing natural language generation by integrating external knowledge into a model's output. While prior work has demonstrated the importance of improving knowledge retrieval for boosting generation quality, the role of knowledge selection remains less clear. This paper empirically analyzes how knowledge selection influences downstream generation performance in RAG systems. By simulating different retrieval and selection conditions through a controlled mixture of gold and distractor knowledge, we assess the impact of these factors on generation outcomes. Our findings indicate that the downstream generator model's capability, as well as the complexity of the task and dataset, significantly influence the impact of knowledge selection on the overall RAG system performance. In typical scenarios, improving the knowledge recall score is key to enhancing generation outcomes, with the knowledge selector providing limited benefit when a strong generator model is used on clear, well-defined tasks. For weaker generator models or more ambiguous tasks and datasets, the knowledge F1 score becomes a critical factor, and the knowledge selector plays a more prominent role in improving overall performance.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com