Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Enhancing Speech Emotion Recognition through Segmental Average Pooling of Self-Supervised Learning Features (2410.12416v1)

Published 16 Oct 2024 in cs.SD, cs.AI, and eess.AS

Abstract: Speech Emotion Recognition (SER) analyzes human emotions expressed through speech. Self-supervised learning (SSL) offers a promising approach to SER by learning meaningful representations from a large amount of unlabeled audio data. However, existing SSL-based methods rely on Global Average Pooling (GAP) to represent audio signals, treating speech and non-speech segments equally. This can lead to dilution of informative speech features by irrelevant non-speech information. To address this, the paper proposes Segmental Average Pooling (SAP), which selectively focuses on informative speech segments while ignoring non-speech segments. By applying both GAP and SAP to SSL features, our approach utilizes overall speech signal information from GAP and specific information from SAP, leading to improved SER performance. Experiments show state-of-the-art results on the IEMOCAP for English and superior performance on KEMDy19 for Korean datasets in both unweighted and weighted accuracies.

Summary

We haven't generated a summary for this paper yet.