Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
11 tokens/sec
Gemini 2.5 Pro Pro
53 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
10 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

Physical Informed-Inspired Deep Reinforcement Learning Based Bi-Level Programming for Microgrid Scheduling (2410.11932v1)

Published 15 Oct 2024 in eess.SY and cs.SY

Abstract: To coordinate the interests of operator and users in a microgrid under complex and changeable operating conditions, this paper proposes a microgrid scheduling model considering the thermal flexibility of thermostatically controlled loads and demand response by leveraging physical informed-inspired deep reinforcement learning (DRL) based bi-level programming. To overcome the non-convex limitations of karush-kuhn-tucker (KKT)-based methods, a novel optimization solution method based on DRL theory is proposed to handle the bi-level programming through alternate iterations between levels. Specifically, by combining a DRL algorithm named asynchronous advantage actor-critic (A3C) and automated machine learning-prioritized experience replay (AutoML-PER) strategy to improve the generalization performance of A3C to address the above problems, an improved A3C algorithm, called AutoML-PER-A3C, is designed to solve the upper-level problem; while the DOCPLEX optimizer is adopted to address the lower-level problem. In this solution process, AutoML is used to automatically optimize hyperparameters and PER improves learning efficiency and quality by extracting the most valuable samples. The test results demonstrate that the presented approach manages to reconcile the interests between multiple stakeholders in MG by fully exploiting various flexibility resources. Furthermore, in terms of economic viability and computational efficiency, the proposal vastly exceeds other advanced reinforcement learning methods.

Citations (1)

Summary

We haven't generated a summary for this paper yet.