Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multi-Objective-Optimization Multi-AUV Assisted Data Collection Framework for IoUT Based on Offline Reinforcement Learning (2410.11282v1)

Published 15 Oct 2024 in eess.SY and cs.SY

Abstract: The Internet of Underwater Things (IoUT) offers significant potential for ocean exploration but encounters challenges due to dynamic underwater environments and severe signal attenuation. Current methods relying on Autonomous Underwater Vehicles (AUVs) based on online reinforcement learning (RL) lead to high computational costs and low data utilization. To address these issues and the constraints of turbulent ocean environments, we propose a multi-AUV assisted data collection framework for IoUT based on multi-agent offline RL. This framework maximizes data rate and the value of information (VoI), minimizes energy consumption, and ensures collision avoidance by utilizing environmental and equipment status data. We introduce a semi-communication decentralized training with decentralized execution (SC-DTDE) paradigm and a multi-agent independent conservative Q-learning algorithm (MAICQL) to effectively tackle the problem. Extensive simulations demonstrate the high applicability, robustness, and data collection efficiency of the proposed framework.

Summary

We haven't generated a summary for this paper yet.