Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
92 tokens/sec
Gemini 2.5 Pro Premium
50 tokens/sec
GPT-5 Medium
22 tokens/sec
GPT-5 High Premium
21 tokens/sec
GPT-4o
97 tokens/sec
DeepSeek R1 via Azure Premium
87 tokens/sec
GPT OSS 120B via Groq Premium
459 tokens/sec
Kimi K2 via Groq Premium
230 tokens/sec
2000 character limit reached

Peer effects in the linear-in-means model may be inestimable even when identified (2410.10772v1)

Published 14 Oct 2024 in stat.ME

Abstract: Linear-in-means models are widely used to investigate peer effects. Identifying peer effects in these models is challenging, but conditions for identification are well-known. However, even when peer effects are identified, they may not be estimable, due to an asymptotic colinearity issue: as sample size increases, peer effects become more and more linearly dependent. We show that asymptotic colinearity occurs whenever nodal covariates are independent of the network and the minimum degree of the network is growing. Asymptotic colinearity can cause estimators to be inconsistent or to converge at slower than expected rates. We also demonstrate that dependence between nodal covariates and network structure can alleviate colinearity issues in random dot product graphs. These results suggest that linear-in-means models are less reliable for studying peer influence than previously believed.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)

X Twitter Logo Streamline Icon: https://streamlinehq.com