Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Kub: Enabling Elastic HPC Workloads on Containerized Environments (2410.10655v1)

Published 14 Oct 2024 in cs.DC

Abstract: The conventional model of resource allocation in HPC systems is static. Thus, a job cannot leverage newly available resources in the system or release underutilized resources during the execution. In this paper, we present Kub, a methodology that enables elastic execution of HPC workloads on Kubernetes so that the resources allocated to a job can be dynamically scaled during the execution. One main optimization of our method is to maximize the reuse of the originally allocated resources so that the disruption to the running job can be minimized. The scaling procedure is coordinated among nodes through remote procedure calls on Kubernetes for deploying workloads in the cloud. We evaluate our approach using one synthetic benchmark and two production-level MPI-based HPC applications -- GROMACS and CM1. Our results demonstrate that the benefits of adapting the allocated resources depend on the workload characteristics. In the tested cases, a properly chosen scaling point for increasing resources during execution achieved up to 2x speedup. Also, the overhead of checkpointing and data reshuffling significantly influences the selection of optimal scaling points and requires application-specific knowledge.

Citations (3)

Summary

We haven't generated a summary for this paper yet.