Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multilingual Controlled Generation And Gold-Standard-Agnostic Evaluation of Code-Mixed Sentences (2410.10580v1)

Published 14 Oct 2024 in cs.CL and cs.AI

Abstract: Code-mixing, the practice of alternating between two or more languages in an utterance, is a common phenomenon in multilingual communities. Due to the colloquial nature of code-mixing, there is no singular correct way to translate an English sentence into a code-mixed sentence. For this reason, standard n-gram-based MT evaluation metrics such as the BLEU score are not appropriate for code-mixed evaluation. To demonstrate this, we propose a novel method for code-mixed text generation: Controlled Generation, which parameterizes the code-mixing degree (CMD) and enables the generation of multiple semantically equivalent code-mixed sentences from a given English sentence. We introduce a robust new evaluation metric: GAME: A Gold-Standard Agnostic Measure for Evaluation of Code-Mixed Sentences. GAME is both language-agnostic and gold-standard-agnostic, i.e. unlike other metrics, GAME does not require gold-standard code-mixed sentences for evaluation, thus eliminating the need for human annotators in the code-mixed evaluation process. When used to evaluate semantically equivalent code-mixed sentences, we find that GAME scores have a lower standard deviation than BLEU scores. Further, we create and release a dataset containing gold-standard code-mixed sentences across 4 language pairs: English-{Hindi, Bengali, French, Spanish} to encourage more computational research on code-mixing.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Ayushman Gupta (2 papers)
  2. Akhil Bhogal (2 papers)
  3. Kripabandhu Ghosh (35 papers)

Summary

We haven't generated a summary for this paper yet.