Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
95 tokens/sec
Gemini 2.5 Pro Premium
55 tokens/sec
GPT-5 Medium
20 tokens/sec
GPT-5 High Premium
20 tokens/sec
GPT-4o
98 tokens/sec
DeepSeek R1 via Azure Premium
86 tokens/sec
GPT OSS 120B via Groq Premium
463 tokens/sec
Kimi K2 via Groq Premium
200 tokens/sec
2000 character limit reached

Improving Semantic Understanding in Speech Language Models via Brain-tuning (2410.09230v3)

Published 11 Oct 2024 in cs.CL and cs.AI

Abstract: Speech LLMs align with human brain responses to natural language to an impressive degree. However, current models rely heavily on low-level speech features, indicating they lack brain-relevant semantics which limits their utility as model organisms of semantic processing in the brain. In this work, we address this limitation by inducing brain-relevant bias directly into the models via fine-tuning with fMRI recordings of people listening to natural stories, a process we name brain-tuning. After testing it on 3 different pretrained model families, we show that brain-tuning not only improves overall alignment with new brain recordings in semantic language regions, but also reduces the reliance on low-level speech features for this alignment. Excitingly, we further show that brain-tuning leads to 1) consistent improvements in performance on a range of downstream tasks and 2) a representational space with increased semantic preference. Our results provide converging evidence, for the first time, that incorporating brain signals into the training of LLMs improves the models' semantic understanding.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com
Youtube Logo Streamline Icon: https://streamlinehq.com