Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
99 tokens/sec
Gemini 2.5 Pro Premium
56 tokens/sec
GPT-5 Medium
26 tokens/sec
GPT-5 High Premium
20 tokens/sec
GPT-4o
106 tokens/sec
DeepSeek R1 via Azure Premium
99 tokens/sec
GPT OSS 120B via Groq Premium
507 tokens/sec
Kimi K2 via Groq Premium
213 tokens/sec
2000 character limit reached

Retraining-Free Merging of Sparse MoE via Hierarchical Clustering (2410.08589v2)

Published 11 Oct 2024 in cs.LG

Abstract: Sparse Mixture-of-Experts (SMoE) models represent a significant advancement in LLM development through their efficient parameter utilization. These models achieve substantial performance improvements at reduced inference costs. However, the deployment of SMoE models faces constraints from extensive memory requirements of expert components in resource-limited environments. To address these limitations, this paper introduces Hierarchical Clustering for Sparsely activated Mixture of Experts (HC-SMoE), a task-agnostic expert merging framework for parameter reduction without retraining. HC-SMoE introduces a novel hierarchical clustering approach based on expert outputs to ensure merging robustness independent of routing decisions. The proposed output-based clustering method enables effective capture of functional relationships between experts for large-scale architectures. We provide theoretical analysis and comprehensive evaluations across multiple zero-shot language tasks to demonstrate HC-SMoE's effectiveness in state-of-the-art models including Qwen and Mixtral. The experimental results validate HC-SMoE's superior performance and practical applicability for real-world deployments.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.