Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Diffusion Density Estimators (2410.06986v1)

Published 9 Oct 2024 in cs.LG and stat.ML

Abstract: We investigate the use of diffusion models as neural density estimators. The current approach to this problem involves converting the generative process to a smooth flow, known as the Probability Flow ODE. The log density at a given sample can be obtained by solving the ODE with a black-box solver. We introduce a new, highly parallelizable method that computes log densities without the need to solve a flow. Our approach is based on estimating a path integral by Monte Carlo, in a manner identical to the simulation-free training of diffusion models. We also study how different training parameters affect the accuracy of the density calculation, and offer insights into how these models can be made more scalable and efficient.

Summary

We haven't generated a summary for this paper yet.