Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Cusp Universality for Correlated Random Matrices (2410.06813v2)

Published 9 Oct 2024 in math.PR, math-ph, and math.MP

Abstract: For correlated real symmetric or complex Hermitian random matrices, we prove that the local eigenvalue statistics at any cusp singularity are universal. Since the density of states typically exhibits only square root edge or cubic root cusp singularities, our result completes the proof of the Wigner-Dyson-Mehta universality conjecture in all spectral regimes for a very general class of random matrices. Previously only the bulk and the edge universality were established in this generality [arXiv:1804.07744], while cusp universality was proven only for Wigner-type matrices with independent entries [arXiv:1809.03971, arXiv:1811.04055]. As our main technical input, we prove an optimal local law at the cusp using the Zigzag strategy, a recursive tandem of the characteristic flow method and a Green function comparison argument. Moreover, our proof of the optimal local law holds uniformly in the spectrum, thus also re-establishing universality of the local eigenvalue statistics in the previously studied bulk [arXiv:1705.10661] and edge [arXiv:1804.07744] regimes.

Citations (2)

Summary

We haven't generated a summary for this paper yet.