Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
103 tokens/sec
GPT-4o
11 tokens/sec
Gemini 2.5 Pro Pro
50 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

Privacy Vulnerabilities in Marginals-based Synthetic Data (2410.05506v2)

Published 7 Oct 2024 in cs.CR and cs.LG

Abstract: When acting as a privacy-enhancing technology, synthetic data generation (SDG) aims to maintain a resemblance to the real data while excluding personally-identifiable information. Many SDG algorithms provide robust differential privacy (DP) guarantees to this end. However, we show that the strongest class of SDG algorithms--those that preserve \textit{marginal probabilities}, or similar statistics, from the underlying data--leak information about individuals that can be recovered more efficiently than previously understood. We demonstrate this by presenting a novel membership inference attack, MAMA-MIA, and evaluate it against three seminal DP SDG algorithms: MST, PrivBayes, and Private-GSD. MAMA-MIA leverages knowledge of which SDG algorithm was used, allowing it to learn information about the hidden data more accurately, and orders-of-magnitude faster, than other leading attacks. We use MAMA-MIA to lend insight into existing SDG vulnerabilities. Our approach went on to win the first SNAKE (SaNitization Algorithm under attacK ... $\varepsilon$) competition.

Summary

We haven't generated a summary for this paper yet.