Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
116 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
24 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
35 tokens/sec
2000 character limit reached

TA3: Testing Against Adversarial Attacks on Machine Learning Models (2410.05334v1)

Published 6 Oct 2024 in cs.CR and cs.LG

Abstract: Adversarial attacks are major threats to the deployment of ML models in many applications. Testing ML models against such attacks is becoming an essential step for evaluating and improving ML models. In this paper, we report the design and development of an interactive system for aiding the workflow of Testing Against Adversarial Attacks (TA3). In particular, with TA3, human-in-the-loop (HITL) enables human-steered attack simulation and visualization-assisted attack impact evaluation. While the current version of TA3 focuses on testing decision tree models against adversarial attacks based on the One Pixel Attack Method, it demonstrates the importance of HITL in ML testing and the potential application of HITL to the ML testing workflows for other types of ML models and other types of adversarial attacks.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)