Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Real-time Ship Recognition and Georeferencing for the Improvement of Maritime Situational Awareness (2410.04946v1)

Published 7 Oct 2024 in cs.CV and cs.AI

Abstract: In an era where maritime infrastructures are crucial, advanced situational awareness solutions are increasingly important. The use of optical camera systems can allow real-time usage of maritime footage. This thesis presents an investigation into leveraging deep learning and computer vision to advance real-time ship recognition and georeferencing for the improvement of maritime situational awareness. A novel dataset, ShipSG, is introduced, containing 3,505 images and 11,625 ship masks with corresponding class and geographic position. After an exploration of state-of-the-art, a custom real-time segmentation architecture, ScatYOLOv8+CBAM, is designed for the NVIDIA Jetson AGX Xavier embedded system. This architecture adds the 2D scattering transform and attention mechanisms to YOLOv8, achieving an mAP of 75.46% and an 25.3 ms per frame, outperforming state-of-the-art methods by over 5%. To improve small and distant ship recognition in high-resolution images on embedded systems, an enhanced slicing mechanism is introduced, improving mAP by 8% to 11%. Additionally, a georeferencing method is proposed, achieving positioning errors of 18 m for ships up to 400 m away and 44 m for ships between 400 m and 1200 m. The findings are also applied in real-world scenarios, such as the detection of abnormal ship behaviour, camera integrity assessment and 3D reconstruction. The approach of this thesis outperforms existing methods and provides a framework for integrating recognized and georeferenced ships into real-time systems, enhancing operational effectiveness and decision-making for maritime stakeholders. This thesis contributes to the maritime computer vision field by establishing a benchmark for ship segmentation and georeferencing research, demonstrating the viability of deep-learning-based recognition and georeferencing methods for real-time maritime monitoring.

Summary

We haven't generated a summary for this paper yet.