Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Contrastive Learning to Improve Retrieval for Real-world Fact Checking (2410.04657v1)

Published 7 Oct 2024 in cs.CL, cs.AI, and cs.LG

Abstract: Recent work on fact-checking addresses a realistic setting where models incorporate evidence retrieved from the web to decide the veracity of claims. A bottleneck in this pipeline is in retrieving relevant evidence: traditional methods may surface documents directly related to a claim, but fact-checking complex claims requires more inferences. For instance, a document about how a vaccine was developed is relevant to addressing claims about what it might contain, even if it does not address them directly. We present Contrastive Fact-Checking Reranker (CFR), an improved retriever for this setting. By leveraging the AVeriTeC dataset, which annotates subquestions for claims with human written answers from evidence documents, we fine-tune Contriever with a contrastive objective based on multiple training signals, including distillation from GPT-4, evaluating subquestion answers, and gold labels in the dataset. We evaluate our model on both retrieval and end-to-end veracity judgments about claims. On the AVeriTeC dataset, we find a 6\% improvement in veracity classification accuracy. We also show our gains can be transferred to FEVER, ClaimDecomp, HotpotQA, and a synthetic dataset requiring retrievers to make inferences.

Citations (1)

Summary

We haven't generated a summary for this paper yet.