Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Where are we in audio deepfake detection? A systematic analysis over generative and detection models (2410.04324v4)

Published 6 Oct 2024 in cs.SD, cs.AI, and eess.AS

Abstract: Recent advances in Text-to-Speech (TTS) and Voice-Conversion (VC) using generative AI technology have made it possible to generate high-quality and realistic human-like audio. This poses growing challenges in distinguishing AI-synthesized speech from the genuine human voice and could raise concerns about misuse for impersonation, fraud, spreading misinformation, and scams. However, existing detection methods for AI-synthesized audio have not kept pace and often fail to generalize across diverse datasets. In this paper, we introduce SONAR, a synthetic AI-Audio Detection Framework and Benchmark, aiming to provide a comprehensive evaluation for distinguishing cutting-edge AI-synthesized auditory content. SONAR includes a novel evaluation dataset sourced from 9 diverse audio synthesis platforms, including leading TTS providers and state-of-the-art TTS models. It is the first framework to uniformly benchmark AI-audio detection across both traditional and foundation model-based detection systems. Through extensive experiments, (1) we reveal the limitations of existing detection methods and demonstrate that foundation models exhibit stronger generalization capabilities, likely due to their model size and the scale and quality of pretraining data. (2) Speech foundation models demonstrate robust cross-lingual generalization capabilities, maintaining strong performance across diverse languages despite being fine-tuned solely on English speech data. This finding also suggests that the primary challenges in audio deepfake detection are more closely tied to the realism and quality of synthetic audio rather than language-specific characteristics. (3) We explore the effectiveness and efficiency of few-shot fine-tuning in improving generalization, highlighting its potential for tailored applications, such as personalized detection systems for specific entities or individuals.

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com

GitHub