Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 90 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 41 tok/s
GPT-5 High 42 tok/s Pro
GPT-4o 109 tok/s
GPT OSS 120B 477 tok/s Pro
Kimi K2 222 tok/s Pro
2000 character limit reached

Predictive Coding for Decision Transformer (2410.03408v2)

Published 4 Oct 2024 in cs.LG

Abstract: Recent work in offline reinforcement learning (RL) has demonstrated the effectiveness of formulating decision-making as return-conditioned supervised learning. Notably, the decision transformer (DT) architecture has shown promise across various domains. However, despite its initial success, DTs have underperformed on several challenging datasets in goal-conditioned RL. This limitation stems from the inefficiency of return conditioning for guiding policy learning, particularly in unstructured and suboptimal datasets, resulting in DTs failing to effectively learn temporal compositionality. Moreover, this problem might be further exacerbated in long-horizon sparse-reward tasks. To address this challenge, we propose the Predictive Coding for Decision Transformer (PCDT) framework, which leverages generalized future conditioning to enhance DT methods. PCDT utilizes an architecture that extends the DT framework, conditioned on predictive codings, enabling decision-making based on both past and future factors, thereby improving generalization. Through extensive experiments on eight datasets from the AntMaze and FrankaKitchen environments, our proposed method achieves performance on par with or surpassing existing popular value-based and transformer-based methods in offline goal-conditioned RL. Furthermore, we also evaluate our method on a goal-reaching task with a physical robot.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.