Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

TiVaT: A Transformer with a Single Unified Mechanism for Capturing Asynchronous Dependencies in Multivariate Time Series Forecasting (2410.01531v2)

Published 2 Oct 2024 in cs.LG and cs.AI

Abstract: Multivariate time series (MTS) forecasting is vital across various domains but remains challenging due to the need to simultaneously model temporal and inter-variate dependencies. Existing channel-dependent models, where Transformer-based models dominate, process these dependencies separately, limiting their capacity to capture complex interactions such as lead-lag dynamics. To address this issue, we propose TiVaT (Time-variate Transformer), a novel architecture incorporating a single unified module, a Joint-Axis (JA) attention module, that concurrently processes temporal and variate modeling. The JA attention module dynamically selects relevant features to particularly capture asynchronous interactions. In addition, we introduce distance-aware time-variate sampling in the JA attention, a novel mechanism that extracts significant patterns through a learned 2D embedding space while reducing noise. Extensive experiments demonstrate TiVaT's overall performance across diverse datasets, particularly excelling in scenarios with intricate asynchronous dependencies.

Summary

We haven't generated a summary for this paper yet.