Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Maximum Ideal Likelihood Estimator: An New Estimation and Inference Framework for Latent Variable Models (2410.01194v1)

Published 2 Oct 2024 in math.ST, stat.ME, and stat.TH

Abstract: In this paper, a new estimation framework, Maximum Ideal Likelihood Estimator (MILE), is proposed for general parametric models with latent variables and missing values. Instead of focusing on the marginal likelihood of the observed data as in many traditional approaches, the MILE directly considers the joint distribution of the complete dataset by treating the latent variables as parameters (the ideal likelihood). The MILE framework remains valid, even when traditional methods are not applicable, e.g., non-finite conditional expectation of the marginal likelihood function, via different optimization techniques and algorithms. The statistical properties of the MILE, such as the asymptotic equivalence to the Maximum Likelihood Estimation (MLE), are proved under some mild conditions, which facilitate statistical inference and prediction. Simulation studies illustrate that MILE outperforms traditional approaches with computational feasibility and scalability using existing and our proposed algorithms.

Summary

We haven't generated a summary for this paper yet.